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Abstract

The main goal of this thesis is to construct a tensor product on the
2-category BFC/A of braided fusion categories containing a symmetric
fusion categoryA. We achieve this by introducing the new notion of Z(A)-
crossed braided categories. These are categories enriched over the Drinfeld
centre Z(A) of the symmetric fusion category. We show that Z(A) admits
an additional symmetric tensor structure ⊗s, which makes it into a 2-fold
monoidal category. By Tannaka duality, A ∼= Rep(G) (or Rep(G,ω))
for a finite group G (or finite super-group G). Under this identification
Z(A) ∼= VectG[G], the category of G-equivariant vector bundles over
G, and we show that the symmetric tensor product corresponds to (a
super version of) to the fibrewise tensor product. We use the additional
symmetric tensor product on Z(A) to define the composition in Z(A)-
crossed braided categories, whereas the usual tensor product is used for
the monoidal structure. We further require this monoidal structure to be
braided for the switch map that uses the braiding in Z(A).

We show that the 2-category Z(A)-XBF is equivalent to both BFC/A
and the 2-category of (super)-G-crossed braided categories. Using the
former equivalence, the reduced tensor product on BFC/A is defined in
terms of the enriched Cartesian product of (Z(A),⊗s)-enriched categories
on Z(A)-XBF.

The reduced tensor product obtained in this way has as unit Z(A).
It induces a pairing between minimal modular extensions of categories
having A as their Müger centre.
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Chapter 1

Introduction

This thesis concerns a construction of a tensor product of categories for braided
fusion categories that contain a fixed full symmetric subcategory A. The con-
struction goes through an enrichment of the braided fusion category over the
Drinfeld centre Z(A) of the symmetric fusion category A. To facilitate this
construction, we define an additional monoidal structure on the Drinfeld centre
that is laxly compatible with its usual monoidal structure. We examine what
the various ingredients of this construction look like from the point of view of
Tannaka duality for A. We will always work over the field of complex numbers.

1.1 Motivation and background

The construction done in this thesis is motivated by three closely related ques-
tions and existing constructions. An overview of related literature is given in
Section 1.4.

1.1.1 Braided Fusion Categories

Braided fusion categories have been extensively studied in the past twenty years.
Recall that a fusion category is a linear category (it is enriched and tensored
over the category of complex vector spaces) that is tensor (comes equipped with
monoidal structure that factors over the tensor product of vector spaces on
the hom-objects), semi-simple with finitely many isomorphism classes of simple
objects and rigid (every object has left and right duals). A fusion category is
called braided if it comes equipped with an isomorphism between a⊗b and b⊗a
that is natural in a and b and satisfies a compatibility with the associators for
the tensor product. Such braided fusion categories are of independent interest
as the simplest examples of braided monoidal categories, and some progress has
been made towards a classification. As we will describe below, (braided) fusion
categories are closely related to topological systems in condensed matter physics
and to topological field theories in low dimensions. We will focus our discussion
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CHAPTER 1. INTRODUCTION 7

here on the case of ribbon fusion categories (these are braided fusion categories
that come equipped with a monoidal natural isomorphism between the identity
functor and the double dual functor that is compatible with the braiding). The
results in this thesis only require the symmetric fusion category A to be ribbon.

Modular Tensor Categories

Modular tensor categories are examples of ribbon fusion categories for which
the braiding is maximally non-symmetric. Over the complex numbers, a ribbon
fusion categoryM is modular if and only if its Müger centre or full subcategory
of transparent subobjects Z2(M), satisfies

Z2(M) = Vect,

where an object is considered transparent if its double braiding with any other
object is trivial. This property is also called non-degeneracy.

Modular tensor categories are of particular interest because they classify once-
extended oriented (signature extended) three-dimensional topological quantum
field theories with values in the bicategory of linear categories. This classifica-
tion result is especially appealing because it provides a bridge between algebra
and topology, one can directly link the structures a modular tensor category
has (such as the monoidal structure and the braiding) to generators of the
once-extended three-dimensional bordism category, and link the properties these
structures have to relations between these generators.

Minimal Modular Extensions

Not every ribbon fusion category is modular, and, over the complex numbers, the
Müger centre measures the failure of a ribbon fusion category C to be modular.
The Müger centre Z2(C) is always a symmetric fusion category A. One can,
provided thatA is Tannakian (admits a braided functor to Vect), find a modular
tensor category called modularisation of C by essentially taking the quotient
over A. Several constructions of this modularisation exist, we will discuss them
below.

As an alternative way to produce a modular tensor category out of a ribbon
fusion category, one can attempt to find a so-called minimal modular extension
of C. This is a modular tensor categoryM that contains C as a braided subcat-
egory, with the minimality condition that the full subcategory Z2(C,M) of M
of objects transparent with respect to the objects of C satisfies Z2(C,M) = A.
One can think of a minimal modular extension as the result of a process where
one adds objects to C that braid non-trivially with the objects of A. The min-
imality condition then says that no new objects have been added that braid
trivially with A.

Minimal modular extensions do not always exist for a given ribbon fusion
category C. However, if the set of minimal modular extensions of C is non-
empty, it is a torsor for the minimal modular extensions of Z2(C). The reduced
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tensor product defined in this thesis specialises to the action of the minimal
modular extensions of Z2(C) on the minimal modular extensions of C.

In condensed matter physics, finding minimal modular extensions can be
viewed as a form of gauge fixing, this is discussed below.

1.1.2 G-equivariant Topological Quantum Field Theory

The definition of the reduced tensor product given in this thesis is inspired by
considerations about topological quantum field theories. We will outline these
here. Recall that a topological quantum field theory is a symmetric monoidal
functor out of a bordism category (with objects closed manifolds of a fixed di-
mension, morphisms between such objects manifolds with boundary that have
the disjoint union of the objects as their boundary) into the category of (super-
)vector spaces. We can consider bordism categories for different tangential struc-
tures, such as orientation, spin structure or, as we will focus on here, oriented
with principal G bundles for a finite group G. We will refer to field theories
on the latter bordism category as G-equivariant field theories. Furthermore,
using the language of higher categories, where one allows (k + 1)-morphisms
between k-morphisms, one can speak about extended topological quantum field
theories. Here, one takes the morphisms between the morphisms of the bordism
categories to be bordisms between the bordisms defining the morphisms. On
the target side, one then needs to replace the category of (super-)vector spaces
by a categorification thereof. By a categorification one understands a higher
symmetric monoidal category such that repeatedly taking endomorphisms of
the monoidal unit and its identity morphisms yields the original category. A
field theory that has as objects 0-dimensional manifolds is called fully extended.
The dimension of the highest dimensional manifolds that appear in the bordism
category for a field theory is referred to as the dimension of that field theory. A
field theory on a k-dimensional bordism category where the objects are closed
(k − n)-manifolds are called n-fold extended.

Dijkgraaf-Witten Theory

The simplest examples of topological quantum field theories that illustrate our
considerations are Dijkgraaf-Witten theories. Dijkgraaf-Witten theories is the
name given to a family of oriented topological quantum field theories that can
be viewed as a fully extended theories and exist in every dimension. Dijkgraaf-
Witten theories are sometimes called finite gauge theories, to emphasise their
close relation to gauge theories in Physics. In its simplest form the input for a
Dijkgraaf-Witten theory is a finite group G. It is usually defined in two steps.
The first is to view the assignment M 7→ BunG(M), that assigns to a manifold
the groupoid of principal fibre bundles with fibre G on that manifold, as a
functor from an oriented (n-fold extended) bordism category to the category of
(n-fold) spans in groupoids. The second step is a linearisation step, in which
one assigns to each object in spans of groupoids bundles of (a categorification
of) vector spaces.
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As an example, if we consider the once-extended three-dimensional oriented
Dijkgraaf-Witten, we can examine what it assigns to a circle. We will give two
constructions of this value. For the first, observe that the groupoid of principal
G-bundles on the circle is the action groupoid for G acting on itself by conju-
gation. Vector bundles on this are G-equivariant vector bundles over G. The
pair of pants morphism from two circles to one equips this linear category with
its convolution tensor product. The mapping cylinder for the diffeomorphism
that interchanges the legs on the pair of pants gives a braiding for this tensor
product. The braided monoidal category found in this way is the Drinfeld centre
of the representation category Rep(G) of the finite group.

We remind the reader that the Drinfeld centre of a monoidal category (V, ·)
has objects pairs (z, β), where z is an object of the monoidal category and the
half-braiding β is a monoidal natural isomorphism between −· z and z ·−. This
a monoidal category, with monoidal structure (z, β) ⊗c (z′, β′) = (z · z′, (β′ ·
idz′) ◦ (idz · β′)). Braiding along the half-braidings makes this into a braided
monoidal category. As morphisms, we use those morphisms in V that commute
with the half-braidings.

Another way in which one can obtain the same Dijkgraaf-Witten theory is
by starting with a topological quantum field theory on the three-dimensional
once-extended oriented bordism category with principal G-bundles, denoted
BordG,or

1,2,3. The circle then in particular admits a principal G-bundle (not taken
up to equivalence) for each element g of the group, to each of these our topolog-
ical quantum field theory assigns Vect viewed as an object of the 2-category of
linear categories. We can view this data altogether as a G-graded linear cate-
gory DW with Vect in every degree. The pair of pants equipped with principal
G-bundles will give rise to a graded tensor product on DW, while the mapping
cylinders for the deck transformations will give an action of G on DW that
conjugates the grading. This category is braided up to this G-action. This
structure makes DW into a so-called G-crossed braided category. To obtain an
oriented theory from this G-equivariant theory, we can take the homotopy fixed
points for the action of G on DW, the category of homotopy fixed points will
again be the Drinfeld centre of Rep(G).

The second construction of Dijkgraaf-Witten theory can be modified using
a cocycle in α ∈ H3(G,U(1)). In the second description of Dijkgraaf-Witten
we can use this to give a non-trivial associator for the graded tensor product
on DW, we will denote the resulting category by DW(α). In this way one
obtains a H3(G,U(1))’s worth of non-equivalent oriented theories, that assign
the Drinfeld centre of G-graded vector spaces with associator defined by the
cocycle to the circle.

Any category of functors into a symmetric monoidal category carries a monoidal
structure, given by multiplying the values two functors take on objects and mor-
phism. In this way, the category of topological quantum field theories on a given
bordism category into a given target category carries a monoidal structure. For
once-extended three dimensional oriented theories with values in the category
of linear categories LinCat, this monoidal structure is given by the Deligne ten-
sor product (this is the Vect-enriched Cartesian product). Taking the product
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of a Dijkgraaf-Witten theory with trivial cocycle with itself, one obtains the
Dijkgraaf-Witten theory for G×G, with trivial cocycle. However, for field the-
ories on BordG,or

1,2,3, the tensor product of field theories becomes the degree-wise
Deligne product of G-graded categories. In particular, as Vect is the monoidal
unit in LinCat, the category DW with trivial associator will be the monoidal
unit in the category of field theories. Furthermore, this product of G-equivariant
field theories makes the DW(α) into an abelian group which is isomorphic to
H3(G,U(1)). Conversely, one can show that all invertible G-equivariant theo-
ries are in this abelian group.

The reduced tensor product described in this thesis is based on the idea that,
if one knows an oriented field theory comes from a G-equivariant field theory,
there should be a corresponding product of categories that takes this origin into
account, like the degreewise tensor product does.

From G-equivariant to oriented

The homotopy fixed point construction used in the discussion of Dijkgraaf-
Witten should work more generally. There is evidence that G-equivariant ori-
ented once-extended three-dimensional topological quantum field theories are in
one-to-one correspondence with so-called G-crossed modular tensor categories
(particular G-crossed braided categories). These are, in turn, in one-to-one cor-
respondence with modular tensor categories containing Rep(G) as a full symmet-
ric subcategory, where getting from G-crossed modular categories to modular
tensor categories is done by finding the homotopy fixed points.

At the level of topological quantum field theories, this taking homotopy fixed
points should correspond to passing from G-equivariant theories to oriented
theories. From this we infer that there should be a tensor product of modular
tensor categories containing Rep(G) that corresponds to the degreewise prod-
uct of G-crossed braided categories. The reduced tensor product will be this
product.

1.1.3 Short Range Entangled Phases

Topological quantum field theories are intimately related with certain types
of condensed matter systems. In particular, there is a close relation between
G-equivariant theories and so-called short range entangled phases.

Fusion categories in Physics

In theoretical condensed matter physics, one is led to consider physical systems
in which excitations behave like particles. These excitations are then called
quasi-particles. In particular kinds of systems, known as topological phases of
matter, observables only depend on topological properties of the system. In two
spatial dimensions, there are such systems of quasi-particles where observables
only depend on the topology of the path the quasi-particles take, that is, on how
they wind around each other, and on whether they merge. One can describe
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such systems in terms of braided fusion categories. Quasi-particles correspond
to objects, viewing the monoidal unit as the trivial excitation, the braiding
corresponds to the winding, while the fusion corresponds to the merging of the
quasi-particles.

From this point of view, non-degeneracy of a braided tensor category means
that all quasi-particles apart from the ground state (trivial excitation) can be
measured by winding the quasi-particles around each other.

Minimal Modular Extension as Gauge Fixing

Suppose now that we have a degenerate ribbon fusion category, that is, we as-
sume its Müger centre is non-trivial. Viewing the objects in this category as
quasi-particles as described above, we can interpret the Müger centre as un-
observable degrees of freedom. Unobservable degrees of freedom signify gauge
freedom, and, because the Müger centre is symmetric, by Tannaka duality (dis-
cussed below) this freedom will be an action of a finite group. Such systems are
also called short-range entangled phases.

When faced with gauge freedom, one wants to fix a gauge, which is often done
by adding so-called ghost particles to the system that enforce constraints on
the system. Reasoning by analogy, we should add ghost particles that make
the transparent objects observable, but do not interact any further with the
physical excitations. This leads to the idea that gauge fixing for the physical
system described by the degenerate ribbon fusion category is done by finding a
minimal modular extension for this category.

Combining two such systems corresponds to taking a tensor product of ribbon
fusion categories. Here, care should be taken to tensor the systems remembering
the gauge freedom. Just as in the case of oriented topological quantum field
theories obtained from aG-equivariant theory, taking the Deligne tensor product
does not incorporate this. The Deligne tensor product of two minimal modular
extensions corresponds to a gauge fixed theory with gauge group G × G. The
appropriate tensor product is again the one that comes from remembering that
we are dealing with theories that come fromG-equivariant theories. The reduced
tensor product defined in this thesis corresponds to taking the tensor product
of systems with gauge freedom in this way.

1.1.4 Finite groups and Fusion Categories

As we have seen above, there is a strong connection between braided fusion
categories containing a symmetric fusion category and G-crossed braided cate-
gories for a particular group G. This correspondence comes about in two steps.
The first is Tannaka duality for symmetric fusion categories, which tells us
symmetric fusion categories are representation categories of finite groups. The
second is a pair of mutually inverse constructions known as equivariantisation
and de-equivariantisation.
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Tannaka Duality for Symmetric Fusion Categories

The relationship between symmetric fusion categories and finite groups is cap-
tured by Tannaka duality. The form of Tannaka duality we will be using in
this thesis is due to Deligne. His Theorem roughly says that every symmetric
fusion category is braided monoidally equivalent to the representation category
of a finite (super-)group. The notion of finite super-group used here is that of
a finite group equipped with a choice of central element of order two.

Part of the content of this Theorem is that every symmetric fusion category
admits a braided monoidal functor to the category of super-vector spaces, called
the fibre functor. If the essential image of this functor is contained in the
subcategory of vector spaces, the symmetric fusion category is called Tannakian,
otherwise we will call it super-Tannakian. The finite (super-)group is found by
computing the (super-)group of tensor automorphisms of the fibre functor. In
the super-Tannakian case, the grading involution of super-vector spaces will
always be an automorphism of the fibre functor and gives rise to the central
order two element of the super-group.

(De)-Equivariantisation

There are two existing mutually inverse constructions to pass between braided
fusion categories containing a symmetric fusion category and G-crossed braided
fusion categories. These constructions necessarily limit themselves to the case
where the symmetric fusion category is Tannakian.

To produce a G-crossed braided category from a braided fusion category C
containing a symmetric fusion category equivalent to Rep(G), one observes that
Rep(G) contains the group algebra C[G] as algebra object. As Rep(G) is a
braided monoidal subcategory of C, this will also be an algebra object in C, and
it makes sense to talk about module objects for this algebra object. The category
of such module objects internal to C is called the de-equivariantisation of C. This
category carries a G-action coming from the action of G on C[G]. Furthermore,
it is G-graded, with G-grading determined from the braiding behaviour of the
module objects with the group algebra in C. The action of the group will
conjugate this grading. The tensor product over C[G] makes this category into
a tensor category, and it carries a braiding up to the action of the group,.

In the particular case where the symmetric fusion category is the Müger centre
of the ribbon fusion category C, the de-equivariantisation is a modular tensor
category known as the modularisation of C.

Conversely, given a G-crossed braided fusion category, one can form a braided
fusion category containing Rep(G) by taking the homotopy fixed points for the
action of G. This procedure is known as equivariantisation. We remind the
reader that taking homotopy fixed points on the level of objects means finding
objects c that admit, for each g ∈ G, an isomorphism between c and the image
under the action of g of c, subject to coherence conditions. For the subcategory
spanned by the monoidal unit, the homotopy fixed points are exactly Rep(G).
This category inherits a monoidal stucture, which is now honestly braided, the
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action of the group on the resulting category has been trivialised.
(De)-equivariantisation can be viewed as giving a 2-equivalence between ap-

propriate 2-categories of braided fusion categories containing Rep(G) and of
G-crossed braided fusion categories. This allows one to transport the degree-
wise tensor product of G-crossed braided categories to the 2-category of braided
fusion categories containing Rep(G). The tensor product obtained in this way
agrees with the reduced tensor product defined in this thesis.

In this thesis we give a factorisation of the above mutually inverse 2-functors
into two pairs of mutually inverse 2-functors through an intermediate 2-category.
The first 2-functor (and its inverse) in passing from braided fusion categories
containing a symmetric fusion category to the intermediate 2-category does not
require knowledge of Tannaka duality, and hence does not distinguish between
the Tannakian and super-Tannakian case. Furthermore, the intermediate 2-
category carries a natural symmetric monoidal structure, that we use to define
the reduced tensor product for braided fusion categories. The second step neces-
sarily involves Tannaka duality, but allows a uniform description for both cases.
The super-Tannakian case gives rise to the notion of a super-G-crossed braided
fusion category, which, to the author’s knowledge, is new. We further show that
the symmetric monoidal structure on the intermediate category is taken to the
degreewise tensor product.

Categorical Perspective

A further motivation for the factorisation mentioned in the previous paragraph
is the following. The first step in the factorisation is done purely in terms
of monoidal structure and the braiding for the braided fusion category. In
particular, we never need to find algebra objects and modules for these. This
means that the expression we find for the reduced tensor product is directly in
terms of the data of the monoidal structure and the braiding, making it more
amenable to computations. This is in line with the philosophical argument that
one should be able to construct such a product of categories in terms of just the
categorical data.

When the symmetric fusion category is contained in the Müger centre of the
ribbon fusion category and Tannakian, de-equivariantisation produces a ribbon
fusion category, called the modularisation. Following the procedure outlined in
this thesis gives a way of finding the de-equivariantisation without using the full
force of Tannaka duality, we only make use of the fibre functor, not the finite
group. Of course, when finding the equivariantisation of a category obtained in
this way, one does need the finite group.

1.2 The Reduced Tensor Product

We will now outline our construction of the reduced tensor product of braided
fusion categories containing a symmetric fusion category. Throughout, we fix
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two braided fusion categories C and D that both contain a symmetric fusion
category A.

1.2.1 The Setup

Our goal is to define a tensor product of C and D, which satisfies the properties
alluded to in the motivation. We will first collect these properties, and then
discuss why some naive candidates for the reduced tensor product will not satisfy
these properties, further motivating our construction.

Desiderata for the Reduced Tensor Product

From the first part of this Introduction, we see that we want to produce a tensor

product
A
�
red

of C and D that:

• outputs a braided fusion category containing A,

• has the Drinfeld centre Z(A) as unit,

• can be computed in terms of the braiding and tensor structure of C and
D.

Existing candidates

The first existing construction that one might consider using is the Deligne
tensor product of linear categories, equipped with the componentwise tensor
product and braiding. While this is certainly a braided fusion category and
computable in terms of the braiding and tensor structure of C and D, its unit
is the category of vector spaces, rather than Z(A).

Another relevant construction is that of the balanced tensor product of module
categories. As A is a tensor subcategory of C and D, these categories can be
viewed as A-bimodule categories. For module categories, there exists the notion
of balanced tensor product C�

A
D, which is a categorification of the notion of

tensor products of modules over an algebra. Indeed, objects of this balanced
tensor product can be viewed as pairs c� d where c and d are objects of C and
D, respectively, which satisfy (ca) � d ∼= c � (ad) for a ∈ A. There are several
ways of computing the balanced tensor product, the approach relevant to this
thesis is to enrich both C and D over A. That is, we add to the hom-object
between c and c′ the vector space of morphisms ac→ c′ as a-summand. These
hom-objects C←−(c, c′) have the defining property

A(a, C←−(c, c′)) ∼= C(ac, c′).

We will denote the A-enriched categories obtained in this way by C←− and D←−,
respectively. For an object a ∈ A, an a-point of a hom-object will be referred
to as a degree a morphism. The balanced tensor product C�

A
D is obtained by

taking as objects pairs of objects in C and D and the tensor product in A on



CHAPTER 1. INTRODUCTION 15

the enriched hom-objects, and then applying the functor A(IA,−) that picks
out the monoidal unit summands to the hom-objects.

The category C�
A
D is a tensor category for the componentwise tensor product.

It is no longer braided, unless A is contained in the Müger centres of C and D.
This is a consequence of the categories C←− and D←− not being braided themselves,
the additional morphisms break the naturality of the braiding. This failure of
the braiding to be natural is, for the tensor product of a degree a1 morphism
out of c1 and a degree a2 morphism out of c2, exactly the difference between

a1 a2 c1 c2

a2 c2 a1 c1

and

a1 a2 c1 c2

a2 c2 a1 c1

.

These diagrams differ from each other exactly by a pre-composition with the
braiding monodromy βc1,a2 ◦ βa2,c1 between a2 and c1.

Recall that a braiding for a monoidal object in a symmetric monoidal 2-
category is by definition a natural transformation between −⊗− and the switch
functor for the symmetric monoidal 2-category followed by −⊗−. The idea for
fixing this failure of naturality of the braiding is now to encode the braiding
monodromies into the switch functor.

1.2.2 Encoding the braiding monodromy

From our discussion of the balanced tensor product, we have learned that we
need to keep track of the braiding behaviour of the objects of C and D with
the objects of A. We propose to do this by equipping the hom-objects in the
A-enrichment of C and D with a half-braiding for objects of A, thus viewing
them as objects in the Drinfeld centre Z(A) of A. That is, we want to build
Z(A)-enriched categories out of C and D.

If we pick the half-braidings so that they correspond to the braiding mon-
odromies, using a switch functor that uses these half-braidings will indeed in-
corporate the braiding monodromies into the switch functor.

Enriching over the Drinfeld Centre

To capture the braiding monodromies in the half-braidings, we use a technical
trick. Our category C←− is enriched and tensored over A, and as a consequence
of this we have

a C←−(c, c′) ∼= C←−(c, ac′).

The right hand object has an automorphism given by post-composition with the
braiding monodromy of a and c′. We combine this with the symmetry in A to
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define the half-braiding βa : a C←−(c, c′) → C←−(c, c′)a on C←−(c, c′). We will denote

the object in Z(A) defined in this way by C←−(c, c′).

Having done this, the question is whether this assignment produces a Z(A)-
enriched monoidal category. In particular, we would like for the composition
and monoidal structure of C to induce the composition and monoidal structure
for C←−.

Composition

An illustrative minimal requirement for compatibility with composition is the
desire for identities to compose. Recall that, in an enriched category, composi-
tion is a morphism out of the monoidal product in the enriching category. That
is, if K is a category enriched over a monoidal category (V, ·), the composition
in K is for objects k, k′, k′′ ∈ K a morphism:

◦ : K(k′, k′′) · K(k, k′)→ K(k, k′′).

The monoidal structure on the Drinfeld centre combines the half-braidings, as
mentioned in Section 1.1.2. So the composite of endomorphisms on c would be
a map out of an object equipped with the square of the braiding monodromies
with objects a ∈ A as half-braidings into an object equipped with half-braiding
coming from just the braiding monodromy. Schematically, for the identity on c,
in string diagrams this is saying:

a c c

◦7→

a c

6=

a c

.

Here, we have used unresolved crossings to indicate the use of the symmetry in
A, this is an external operation that does not take place in C. This use of the
string diagram calculus is explained in Chapter 5. As these half-braidings will
be different in general, this implies composition cannot factor through the ⊗c
monoidal structure on Z(A).

We will solve this problem by defining a second monoidal structure ⊗s on
Z(A), that picks out the subobject of the tensor product of the underlying
objects in A on which the half-braidings agree. We will then use this monoidal
structure to factor the composition in our Z(A)-enriched categories over.

Monoidal Structure

We also want our Z(A)-enrichment to be compatible with the monoidal struc-
ture coming from the monoidal structure on C. It turns out that the monoidal
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structure will factor through the ⊗c-product on the hom-objects, i.e. define for
objects c1, c

′
1, c2, c

′
2 ∈ C a map:

⊗ : C←−(c1, c
′
1)⊗c C←−(c2, c

′
2)→ C←−(c1 ⊗ c2, c′1 ⊗ c′2).

For identities on c1 and c2 this looks like:

a c1 c2

⊗7→

a c1 c2

=

a c1 c2

.

We see that the monoidal structure does factor over ⊗c. This means we have
to define a notion of a category that is enriched over Z(A) equipped with the
second monoidal structure ⊗s, but has a kind of monoidal structure that uses
⊗c on hom-objects. This will lead us to the notion of a Z(A)-crossed braided
category.

1.2.3 Z(A)-Crossed Braided Categories

To capture the behaviour observed above, we want to find a notion of product
�
c

of (Z(A),⊗s)-enriched category that uses ⊗c on hom-objects, rather than ⊗s
that we can define our monoidal structure out of. It turns out that what we
need for this is for ⊗s and ⊗c to be laxly compatible.

The Symmetric Tensor Product on Z(A)

The operation ⊗s on Z(A) is defined as follows. Given two objects (a, βa) and
(b, βb) in Z(A), we want to first pick out the subobject of a⊗A b on which the
half-braidings βa and βb “agree”. To do this, we use the idempotent:

Πa,b =

a b

.

The ring represents a sum over the simple objects of A, this idempotent can be
read as checking, for each of these simples, if the half-braidings will cancel each
other out. Now we take the subobject associated to this idempotent, and we
equip it with the half-braiding coming from either (a, βa) or (b, βb), which on
this subobject agree.

This tensor product is symmetric, with symmetry induced by the symmetry
in A.
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Z(A) as a 2-fold Tensor Category

By the well-known Eckmann-Hilton argument, any two monoid structures on
a set that are homomorphisms with respect to each other are equal and com-
mutative. This argument generalises to monoidal structures on categories, if
two monoidal structures are strongly monoidal with respect to each other, they
must agree. However, if we allow the comparison natural transformations to be
non-invertible, i.e. we ask for the monoidal structures to be only laxly compat-
ible, this argument fails. This means that we have a notion of 2-fold monoidal
category as being a category equipped with two laxly compatible monoidal struc-
tures.

From the way we construct the symmetric tensor product ⊗s, we expect there
to be a relationship between ⊗s and ⊗c. Specifically, it turns out that there is
a morphism

(a⊗s b)⊗c (c⊗s d)→ (a⊗c c)⊗s (b⊗c d),

that exhibits (a⊗s b)⊗c (c⊗s d) as a subobject of (a⊗c c)⊗s (b⊗c d) in Z(A)
for objects a, b, c, d ∈ Z(A).

These morphisms combine to a lax compatibility natural transformation, and
the associated projections into an oplax compatibility. This makes the Drinfeld
centre of A into a 2-fold tensor category. Furthermore, the symmetry for ⊗s
and the braiding for ⊗c are compatible with this lax structure.

Z(A)-Crossed Tensor Categories

Due to the lax compatibility between ⊗s and ⊗c, we can define a tensor product
K�

c
L of (Z(A),⊗s)-enriched categories K and L by taking the objects to be

pairs k � l of objects in K and L, while taking ⊗c on hom-objects. This is the
tensor product of categories our monoidal structure will factor through.

A Z(A)-crossed tensor category is then a (Z(A),⊗s)-enriched category with
monoidal structure ⊗ : K�

c
K. The categories C←− and D←− obtained by enriching

over Z(A) are Z(A)-crossed tensor categories.

Z(A)-Crossed Braided Categories

The product �
c

comes with a switch functor induced by the braiding for ⊗c. Us-

ing this switch functor we can now define a Z(A)-crossed braided category to be
a Z(A)-crossed tensor category equipped with a monoidal natural isomorphism
between the composite of this switch functor with the monoidal structure and
the monoidal structure. We further require this braiding to satisfy the usual
hexagon equations.

The categories C←− and D←− are Z(A)-crossed braided categories, as having in-

corporated the braiding monodromies into the half-braiding ensures the original
braidings will be natural.
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Tensor Product of Z(A)-Crossed Braided Categories

For categories enriched over a symmetric monoidal category, there is a sym-
metric tensor product of such categories. This is obtained by taking objects
to be pairs and using the monoidal structure on hom-objects. For the case
of (Z(A),⊗s)-enriched categories, this means using the symmetric monoidal
structure ⊗s, we will denote this product by �

s
.

Using the oplax compatibility between ⊗s and ⊗c we can show that, for Z(A)-
crossed braided categories K and L, the product K�

s
L is again Z(A)-crossed

braided. Furthermore, the unit for �
s

is the category Z(A)
←−−−

obtained by applying

the enriching procedure described above to Z(A) itself.
We recognise �

s
as coming close to the desiderata outlined for the reduced

tensor product. We have found a product that outputs a braided category, with
a version of Z(A) as the unit, and which can be computed in terms of the
braiding and monoidal structure. All that is left now is to produce from C←−�

s
D←−

a braided fusion category.

De-enriching

The procedure outlined above to obtain from a braided fusion category con-
taining A a Z(A)-crossed braided category admits an inverse. This inverse will
be called de-enriching, and is performed in two steps. First, one forgets the
half-braidings on the hom-objects, returning to a A-enriched category. Then,
one applies the functor A(IA,−) to the hom-objects to obtain a linear category.
The 2-functor this construction defines will be denoted by DeEnrich.

We will show that de-enriching a Z(A)-crossed braided fusion category gives
a braided fusion category, and that, in fact, de-enriching C←− gives back C.

1.2.4 The Reduced Tensor Product

We have now described all the ingredients needed to define the reduced tensor
product of braided fusion categories containing A.

Definition of the Reduced Tensor Product

Given braided fusion categories C and D containing a symmetric fusion category
A, we can now define the reduced tensor product of C and D by:

C
A
�
red
D := DeEnrich( C←−�

s
D←−).

The unit will be given by Z(A).
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1.3 Results

We now summarise the results needed to follow the above route, and the addi-
tional results we prove along the way.

1.3.1 Symmetric Tensor Product on the Drinfeld Centre

In Chapter 2, we discuss how to define the symmetric tensor product ⊗s on
the Drinfeld centre of a symmetric fusion category A. We then examine what
this symmetric tensor product looks like in the Tannakian and super-Tannakian
cases.

The Symmetric Tensor Product

We prove that the symmetric tensor product is a symmetric tensor product on
Z(A).

Theorem A. The Drinfeld centre equipped with the symmetric tensor product
(Z(A),⊗s, Is, s) is a symmetric tensor category.

This appears as Theorem 2.22 in the main text. The definition of ⊗s on
objects is given in Definition 2.11, on morphisms it is defined in Definition 2.22.
The unit Is is given in Definition 2.16. The symmetry s is induced by the
symmetry in A and is described in Lemma 2.13.

The Tannakian Case

For the case where A ∼= Rep(G), we show that the symmetric tensor product
is sent to the fibrewise tensor product of G-equivariant vector bundles over G
under the equivalence between the Drinfeld centre of Rep(G) and the category
VectG[G].

Theorem B. Let G be a finite group. Then the equivalence

Z(Rep(G)) ∼= VectG[G]

takes the symmetric tensor product ⊗s to the fibrewise tensor product of G-
equivariant vector bundles.

We prove this as Theorem 2.28.

The Super-Tannakian Case

In the super-Tannakian case where A is equivalent to the category Rep(G,ω) of
a finite super-group (G,ω), we define, for each central order two element ω ∈ G
a super version of the fibrewise tensor product:
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Definition C (Definition 2.33). Let G be a finite group, and pick a central order
two element ω ∈ G. This choice induces a Z2-grading obtained by viewing ω
as grading involution on G-equivariant vector bundles over G. The fibrewise
super-tensor product for this choice of ω of two G-equivariant vector bundles V
and W over G that are homogeneous for the Z2-grading has fibres:

(V ⊗ωf W )g = Vω|W |gWω|V |g,

where |V | denotes the grading of V , and the product is the tensor product of
vector spaces.

The author believes this Definition has not previously appeared in the litera-
ture.

This super-version of the fibrewise tensor product is exactly the image of the
symmetric tensor product under the equivalence Z(Rep(G,ω)) ∼= VectG[G]:

Theorem D (Theorem 2.35). Let (G,ω) be a finite super-group. Then the
equivalence

Z(Rep(G,ω)) ∼= VectG[G]

takes the symmetric tensor product ⊗s to the fibrewise super-tensor product ⊗ωf .

1.3.2 The Drinfeld Centre as a 2-Fold Tensor Category

In Chapter 3, we show that the symmetric tensor product ⊗s from Chapter 2
together with the usual tensor product ⊗c gives Z(A) the structure of a 2-fold
tensor category.

The Notion of Lax Compatibility

The lax compatibility between ⊗s and the usual tensor tensor product ⊗c on the
Drinfeld centre of the symmetric fusion categoryA has some additional desirable
structure. For example, post-composing the oplax comparison with the lax
comparison gives the identity, as they come from inclusions and projections for
the same subobjects. To capture this, we make the following definition. Recall
that a 2-fold tensor category is a linear category with two laxly compatible
tensor structures.

Definition E (Definitions 3.1, 3.2, 3.3 and 3.4). A 2-fold tensor category is
called vertically symmetric braided strongly inclusive bilax if the tensor struc-
tures are also oplax compatible, the oplax comparison composed with the lax
comparison is the identity, the product of the monoidal for the first tensor
structure with itself for second tensor structure is isomorphic to this unit, both
structures are compatibly braided, and the braiding for the second product is
symmetric.
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The Drinfeld Centre as 2-Fold Tensor Category

The main result of Chapter 3 is:

Theorem F. The category (Z(A),⊗c,⊗s) is a vertically symmetric braided
strongly inclusive bilax 2-fold tensor category.

This appears as Theorem 3.5.

1.3.3 Z(A)-Crossed Braided Tensor Categories

Chapter 4 is devoted to developing the theory of Z(A)-crossed braided tensor
categories.

Definition of Z(A)-Crossed Braided Categories

The definition of Z(A)-crossed braided categories appears in the main text as
Definitions 4.16 and 4.20. These combine to:

Definition G. A (Z(A),⊗s)-enriched category K is called a Z(A)-crossed
braided tensor category if it is equipped with a monoidal structure

⊗ : K�
c
K → K,

that is braided with respect to the switch functor for �
c

that is induced by the

half-braiding in Z(A). The unit is defined to be a functor AZ → K satisfying
the usual conditions.

Here �
c

is the tensor product of (Z(A),⊗s)-enriched categories that has ob-

jects pairs of objects and takes the tensor product ⊗c on hom-objects. The
category AZ is A enriched over A ⊂ Z(A)s, this is the unit for �

c
. These cat-

egories also admit a symmetric monoidal product of categories �
s

obtained by

using ⊗s on hom-objects.

Equivalence with (super) G-Crossed Braided Categories

Using Tannaka duality, we can study the relation between Z(A)-crossed braided
categories and the existing notion of G-crossed braided tensor categories. In the
super-Tannakian case, this leads to the notion of super-(G,ω)-crossed braided
tensor category (Definition 4.31), which to the author’s knowledge is new.

After setting up 2-categories Z(A)-XBF of Z(A)-crossed braided tensor cat-
egories and G-XBF (or (G,ω)-XBF) of (super-)G-crossed braided tensor cat-
egories, we prove:

Theorem H (4.27). There is a symmetric monoidal equivalence of 2-categories

(−) : Z(A)-XBF←→ G-XBF : Fix,

where we replace G-XBF by (G,ω)-XBF in the super-Tannakian case.
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The 2-functor (−) is induced from the composite of the forgetful functor
Z(A)→ A with the (super)-fibre functor A → sVect. The 2-functor Fix takes
homotopy fixed points for the G-action on the G-crossed braided categories.

1.3.4 From Braided Fusion Categories to Z(A)-Crossed
Braided Categories

Having set up the theory of Z(A)-crossed braided categories, in Chapter 5 we
show how to obtain these categories from braided fusion categories containing
A. We will show that this construction has an inverse.

Enriching over the Drinfeld Centre

The first part Chapter 5 is devoted to showing how to obtain Z(A)-crossed
braided categories from braided fusion categories containing A, we will call this
procedure (−)

←−
. We prove:

Theorem I (Theorem 5.8). Let C be a braided fusion category containing a
symmetric fusion category A, then the category C←− is a Z(A)-crossed braided

category.

We set up a 2-category of braided fusion categories containing A, denoted
BFC/A and show that (−)

←−
defines a 2-functor from this 2-category to the

2-category to Z(A)-XBF.

Equivalence between BFC/A and Z(A)-XBF

The 2-functor (−)
←−

admits an inverse, given by DeEnrich. This 2-functor is

induced from the composite of the forgetful functor Z(A)→ A with A(Is,−).

Theorem J. There is an equivalence of 2-categories

(−)
←−

: BFC/A ←→ Z(A)-XBF : DeEnrich.

This is Theorem 5.41 in this thesis.

1.3.5 Relation to De-Equivariantisation

The results above are intimately related to (de-)equivariantisation, as we will
explore in Chapter 6. Their relationship is expressed in the following diagram:

Z(A)-XBF

BFC/A G-XBF.

DeEnrich

(−)
(−)
←−−

De−Eq

Eq

Fix
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Here De−Eq is the 2-functor defined by de-equivariantisation, which takes a
braided fusion category C containing A = Rep(G) to the category of modules
over C[G] internal to C. Its inverse, Eq, takes homotopy fixed points. We show
that this diagram commutes in two steps.

Equivariantisation

We prove the following as Theorem 6.4.

Theorem K. The composite

G-XBF
Fix−−→ Z(A)-XBF

DeEnrich−−−−−−−→ BFC/A

is equal to Eq.

De-Equivariantisation

As the diagram above commutes for the left-pointing arrows, and all these are
inverses to the right pointing arrows, we obtain:

Theorem L (Corollary 6.5). The composite

BFC/A
(−)
←−−−−→ Z(A)-XBF

(−)−−→ G-XBF

is equivalent to De−Eq.

1.3.6 The Reduced Tensor Product

The above constructions allow us to define the reduced tensor product in Chap-
ter 6.

Definition of the Reduced Tensor Product

Using the (de)-enriching construction from Chapter 5, we can define:

Definition M. Let C and D be braided fusion categories containing A. Then
the reduced tensor product of C and D is given by:

C
A
�
red
D := DeEnrich( C←−�

s
D←−).

Properties of the Reduced Tensor Product

With this definition of the reduced tensor product we can establish:

Theorem N. The 2-category BFC/A is symmetric monoidal for
A
�
red

, with unit

given by Z(A).

This combines Theorem 5.41 with Proposition 6.7.
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Minimal Modular Extensions

Denote the set of minimal modular extensions of C with Z2(C) = A by MMEA(C).

Theorem O (Corollary 6.18). The reduced tensor product gives a pairing:

−
A
�
red
− : MMEA(C)×MMEA(D)→ MMEA(C�

A
D).

1.4 Related work

We will now discuss existing work related to the contents of this thesis. This
splits roughly into two parts. The first is the fusion category literature. Fusion
categories have been extensively studied since their conception. The second
part is literature more closely related to the applications of fusion categories in
physics.

1.4.1 Fusion Categories

The basic reference for the theory of fusion categories is [ENO05]. This paper
develops the basic theory of fusion categories. For a treatment in terms of string
diagrams, which are used extensively in this thesis, see [Bar16].

Tannaka Duality

Deligne’s original proof of the Tannaka duality used in this paper is spread out
over [Del90, Del02]. A review is in [Ost04].

Modularisation

The factorisation of de-equivariantisation presented in this thesis is inspired
by and closely related to [Müg00]. In this article the modularisation (called
modular closure there) is constructed by first defining new hom-objects that,
from our point of view, are the image under the fibre functor for the symmetric
fusion category. Upon performing idempotent completion one then obtains the
modularisation. For a treatment of the theory of modular tensor categories see
[Müg03b].

(De)-Equivariantisation

(De-)Equivariantisation is discussed in detail in [DGNO10]. This paper is also
a standard reference for facts about braided fusion categories. The relation
between de-equivariantisation and G-crossed braided categories is summarised
in [Müg10], which also contains detailed references to the literature on this
subject.
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The Reduced Tensor Product

The definition of the reduced tensor product given here owes its name, and its
main inspiration to an unpublished note by Drinfeld [Drib]. This note defines
the reduced tensor product in the special case where A = sVect. This note is
closely related to the discussion of Ising categories in [DGNO10, Appendix B].

1.4.2 Topological Quantum Field Theory

Topological quantum field theories have been widely studied since they were
first defined by Atiyah [Ati88], partly based on Segal’s treatment of conformal
field theory [Seg88] and inspired by Witten’s influential insight into the relation
between Chern-Simons theory and the Jones polynomial [Wit89]. The work in
this thesis is related to three-dimensional once-extended theories.

Once-extended Three-Dimensional TQFT

Since Witten’s observations concerned three-dimensional field theories, three-
dimensional topological quantum field theories are particularly well studied.
The field roughly splits into the study of fully extended or state-sum theories,
usually collectively called Turaev-Viro, and once-extended theories. The state-
sum construction was first given in [TV92], for a treatment of these invariants
from the perspective of fully extended field theories see [DSSP].

Once-extended three-dimensional topological quantum field theories were first
described using a formalism known as modular functors. They were originally
studied by Reshetikhin and Turaev [RT91] as a way of making Witten’s obser-
vations about the Jones polynomial precise. For an extensive treatment of the
techniques involved, see [BK01].

A modern perspective on this, from the point of view of symmetric monoidal
pseudo-functors out of the bordism bicategory in three-dimensions, is given in
[BDSPV14, BDSPV15]. These papers are part of a series that gives a complete
proof of the one-to-one correspondence between modular tensor categories and
(signature-extended) oriented once-extended three-dimensional field theories.

Field theories on bordisms equipped with principal G-bundles are studied from
the modular functor perspective in [Tur10]. In this book Turaev also proves one
can obtain a G-equivariant modular functor from a G-crossed modular tensor
category (a particular type of G-crossed braided category).

Dijkgraaf-Witten Theory

A motivating example for many of the constructions done here is Dijkgraaf-
Witten theory. This theory originates from Physics [DW90]. It is extensively
studied in the Mathematics literature. A treatment close to the original formu-
lation is in [Wil08]. For a functorial field theory perspective, see [FQ93].
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Minimal Modular Extensions

Minimal modular extensions were first defined by Müger in [Müg03b], where it
was conjectured that minimal modular extensions always exist. An example of
a braided fusion category that does not admit a minimal modular extension was
found by Drinfeld [Dria].

The connection between minimal modular extensions and short range entan-
gled phases was first discussed in [LKW17a, LKW17b], where it is also shown
that minimal modular extensions form a torsor for the minimal modular exten-
sions of the Müger centre. The techniques used to find this torsor structure are
based on finding so-called Lagrangian algebra objects. This thesis is in part
motivated by a desire to understand this torsor structure directly in terms of
the braiding and the modular structure.

An explicit construction of the categories obtained by using the torsor struc-
ture in the special case where the symmetric fusion category is sVect is given
in [BGH+17].

Orbifolding in Field Theory

Another important idea behind this thesis is that of orbifolding, passing from
a field theory with a G-action to a quotient, for us this corresponds to taking
homotopy fixed points. In the context of fusion categories, this is discussed in
[Kir02]. For a treatment of orbifolding in the context of topological quantum
field theory, see [SW17].

1.5 Outlook

We will now discuss possibilities for future work based on this thesis.

1.5.1 The Reduced Tensor Product

There are some open questions regarding the reduced tensor product defined
here.

Invertible Objects

In Proposition 6.13 we discuss what the invertible objects for
A
�
red

are in the

Tannakian case. Similar arguments should give a classification of the invertible
objects in the super-Tannakian case. The arguments given require the use of
Tannaka duality, the question is whether there is a description of the group of
invertible objects that is independent of this. In particular, an original motiva-
tion for the project that gave rise to this thesis was to explain the coincidence of
Kitaev’s 16-fold way [Kit06] and Drinfeld’s observation [Drib] that the reduced
tensor product for the case A = sVect has a cyclic group of order 16 as its
invertible objects.
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Minimal Modular Extensions

We have shown that the reduced tensor product gives a pairing, see Theorem
O. We would like to use this to reproduce the result from [LKW17a] that the
minimal modular extensions of a category C are, if non-empty, a torsor for the
minimal modular extensions of its Müger centre.

The pairing of minimal modular extension would also be interesting to study
on its own, as it allows us to find new minimal modular extensions from existing
ones.

Modular Data

Ribbon fusion categories are frequently studied through their modular data,
which encodes the fusion rules, braiding monodromies and twists. As the re-
duced tensor product is defined directly in terms of these structures, we would
like to have a description of the reduced tensor in terms of the modular data.
This is particularly appealing from a computational point of view, the modular
data is used to find classification results for ribbon fusion categories of a given
rank.

1.5.2 Z(A)-Crossed Braided Categories

The notion of Z(A)-crossed braided category presented in this thesis is new,
and there are some questions related to studying what kind of objects these are.

Relation to Bundles of Categories

The notion of G-crossed braided category can be seen as a categorification of
VectG[G], i.e. as bundles of linear categories over the action groupoid for the
conjugation action G. We would like to know if there is a similar description of
Z(A)-crossed braided categories.

Modularity

Both 2-categories BFC/A and G-XBF admit a definition of what it means for
an object to be modular. There should be a corresponding definition of mod-
ularity for Z(A)-XBF. By [BDSPV15], the objects BFC/A that are modular
tensor categories correspond to LinCat-valued once-extended three-dimensional
(signature extended) oriented topological quantum field theories. Z(A)-crossed
modular categories should allow for a similar description, likely in terms of
modular objects in the 2-category of A-enriched and tensored categories.

1.5.3 G-Equivariant Field Theories and Orbifolding

Though this thesis is partly inspired by topological quantum field theory con-
siderations, these considerations are not part of this work. This leaves room for
future work.
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From G-Equivariant to Oriented

One element central to our motivation, the passage from G-equivariant the-
ories to oriented theories and its relation to taking homotopy fixed points for
G-crossed braided categories, remains unexplored. It would be interesting to ex-
plore this relationship further. Steps in this direction have already been taken
in [SW17].

The Reduced Tensor Product as Product of Field Theories

The reduced tensor product should come about as a product of field theories.
To show this is indeed the case, one would need a classification of G-equivariant
once-extended three-dimensional field theories.



Chapter 2

The Symmetric Tensor
Product on the Drinfeld
Centre of a Symmetric
Fusion Category

2.1 Introduction

Let (A,⊗) be a symmetric ribbon fusion category over C. It is well-known
[Müg03a] that its Drinfeld center Z(A) (Definition A.36) is a modular tensor
category. By Tannaka duality [Del90] (see Theorem A.35), there is a finite
group G (or super-group (G,ω)) such that A = Rep(G) (or Rep(G,ω)). In
the non-super case, with this identification, we have another description of the
Drinfeld centre as the category VectG[G] of G-equivariant vector bundles on G
(Definition A.37), equipped with the convolution tensor product. This category
carries an additional tensor structure given by fibrewise tensor product, and this
tensor structure is symmetric.

Our goal is to define a symmetric tensor product

⊗s : Z(A) � Z(A)→ Z(A),

that is a purely categorical version of the fibrewise tensor product. We avoid
using Tannaka duality in defining ⊗s. In particular, this categorical description
will treat the super and non-super Tannakian cases on equal footing. In the
super Tannakian case, this will lead us to define a generalisation of the fibrewise
tensor product to equivariant vector bundles over a super-group. Additionally,
we will show in Chapter 3 that the symmetric tensor product ⊗s together with
the usual tensor product ⊗c make the Drinfeld centre into a lax 2-fold tensor
category.

30
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To define a⊗s b we will employ the idempotent on a⊗c b (defined in Section
2.3.1) given by

Πa,b =

a b

,

to pick out the subobject of a ⊗ b ∈ Z(A) on which the half-braidings of a
and b agree. We then equip this subobject with the half-braiding coming from
(equivalently) a or b.

The outline of this Chapter is as follows. In Section 2.2 we introduce some
notation and useful lemmas about subobjects in idempotent complete categories,
and about string diagrams. Then, in Section 2.3, we will define the symmetric
tensor product on Z(A). We will do this in two parts. First we will define the
operation ⊗s on objects, and establish the associators, unit object and unitors,
and symmetry objectwise. Secondly, we define ⊗s on morphisms and show that
this definition makes (Z(A),⊗s) into a symmetric monoidal category. In the
final Section 2.4, we verify that, given a fibre functor on A, ⊗s agrees with
the fibrewise tensor product on VectG[G] in the Tannakian case. In the super-
Tannakian case, where A = Rep(G,ω), we first define a new tensor product
VectG[G] that depends on the choice of central element ω. We then show that
the symmetric tensor product on Z(A) is taken to this tensor product on VectG
under the equivalence Z(A) ∼= VectG[G].

2.2 Preliminaries

2.2.1 Notation

Throughout, we will suppress the associators of A (and hence of Z(A)). When
there is no risk of confusion, we will suppress the symbol ⊗. We will make use
of the string diagram calculus for ribbon categories, reading the diagrams from
bottom to top.

When drawing string diagrams in Z(A) we will take the convention that cross-
ings correspond to braiding according to the half-braiding of the over-crossing
object. That is, if (a, β) ∈ Z(A), with β : − ⊗a ⇒ a ⊗ −, and c ∈ Z(A), we
will denote:

βc =

c a

.

Unresolved crossings will denote the use of the symmetry s in A. So for
(a, β), (a′, β′) ∈ Z(A),

sa′,a =:

a′ a

.
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We will sometimes choose to resolve crossings between objects in A ⊂ Z(A) and
objects in Z(A), in order to make manipulations of the string diagrams easier
to follow. Given (a, s−,a) ∈ A ⊂ Z(A) and c ∈ Z(A),

sc,a =:

c a

=

c a

,

In the case where also c = (a′, s−,a′) ∈ A ⊂ Z(A), we have:

sa′,a =:

c a

=

c a

=

c a

, (2.1)

because in this case both half-braidings are given by the symmetry in A. The
following notion will be used throughout

Definition 2.1. Let a, c ∈ C be objects of a braided monoidal category. If

c a

=

c a

,

then a and c are said to be transparent to each other.

Because of the naturality and monoidality of the symmetry, the resolved and
unresolved crossings satisfy:

= . (2.2)

In the rest of this thesis, we will denote a set of representatives of the iso-
morphism classes of simple objects of A by O(A). The quantum dimension of
i ∈ O(A) will be denoted by

di = i ,

where the pivotal structure i ∼= i∗∗ on the right hand side of the loop has been
suppressed. We will also make use of the following notation:

i

i∗∗

:=

i

i∗∗

. (2.3)
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To make A into a ribbon category, we define composing this morphism with the
pivotal structure to be the twist θi on i. From this we read off that, because A
is symmetric, the twist will be ±id on simple objects. The global dimension of
A will be denoted by

D :=
∑

i∈O(A)

d2
i .

This global dimension will always be non-zero, as we are working with fusion
categories over the complex numbers [ENO05, Theorem 2.3].

We will use the additional notation

=
∑

i∈O(A)

di
D i , (2.4)

whenever we encounter an unlabelled loop in a string diagram.

2.2.2 Direct sum decompositions

In our proofs we will make frequent use of the following lemmas and notation.
We will introduce them in the setting of a ribbon fusion category C.
Notation 2.2. Given i, j, k ∈ C, we will denote by B(ij, k) a basis for the vector
space C(ij, k).

Since C is in particular semi-simple, we can, for fixed i, j use this choiceB(ij, k)
for each k ∈ O(C), give a direct sum decomposition of ij. In other words, we
can give a decomposition of the identity on ij as:

i j

=
∑

k∈O(C)

∑
φ∈B(ij,k)

i j

φ

φt

k . (2.5)

Here the φt are defined below. The pairs (φ, φt) for a given k are (projection,
inclusion) pairs for subobjects of ij isomorphic to the simple object k. Choosing
the φ from the basis B(ij, k) ensures we exhaust all k-summands of ij without
linear dependence.

Definition 2.3. Let φ ∈ B(ij, k) be an element in a basis for C(ij, k), for
simple objects i, j, k. Then a transpose of φ is the morphism φt in a dual basis
for C(k, ij), with respect to the pairing:

◦ : C(ij, k)⊗ C(k, ij)→ C(k, k) = C,



CHAPTER 2. THE SYMMETRIC TENSOR PRODUCT 34

such that φ ◦ φt = idk and ψ ◦ φt = 0 for ψ ∈ B(ij, k)− {φ}. As this pairing is
non-degenerate (composing a morphism with an arbitrary morphism can only
always be zero if the morphism is zero), such a dual basis, and hence transpose
always exist.

Picking resolutions of the identities on ij for a fixed i ∈ O(C) and all j ∈ O(C)
induces a corresponding resolution of the identity on k∗i:

Lemma 2.4. Pick, for a fixed i ∈ O(C) and all j ∈ O(C), a resolution of the
identity on ij as in Equation (2.5). Then, for all k ∈ O(C):

ik∗

ik∗

=
∑

j∈O(C)

∑
φ∈B(ij,k)

dj
dk

ik∗

ik∗

φ

φt
j∗

. (2.6)

Proof. We claim that we can give a direct sum decomposition of k∗i, by using
for each j and φ ∈ B(ij, k):

ik∗

φ

j∗

and
dj
dk

ik∗

φt

j∗

(2.7)

as projection and inclusion to j∗, respectively. To see this, we check that com-
posing a φ′ and a φt along k∗i indeed gives the identity on j∗ if and only if
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φ = φ′:

dj
dk

j∗

φt

φ′

=
dj
dk

φt

φ′

=
dj
dk
δφ,φ′ k = δφ,φ′dj ,

where in the first identity is just manipulation of the strings, and in the second
equality we used that composing φ′ and φt along ij gives the identity on k
if φ = φ′ and zero otherwise, by Definition 2.3. As this is the trace of an
endomorphism of j∗ and j∗ is simple, this shows that φ′ and φt compose to the
identity on j∗ if and only if φ = φ′. This shows the morphisms from Equation
2.7 indeed form a linearly independent set of (projection,inclusion) pairs for
each j∗. As j∗ indexes through all isomorphism classes of simple objects in C,
this gives a direct sum decomposition of k∗i.

Similarly, we have:

Lemma 2.5. Pick, for fixed j and all i in O(A) a resolution of the identity as
in Equation (2.5). Then:

j∗k

j∗k

=
∑

i∈O(A)

∑
φ∈B(ij,k)

di
dk

k j∗

k j∗

φt

φ

Proof. The proof is analogous to the proof of the previous lemma.

2.2.3 Idempotents and subobjects

Let C again be a ribbon fusion category, so it is in particular an idempotent
complete category. That is, for every c ∈ C and f ∈ End(c) such that f2 = f
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there exists cf ∈ C, together with i : cf ↪→ c and p : c � cf satisfying pi = idcf
and ip = f . Graphically, we will express this by using:

i =

cf

5f
c

, p =

c

4f
cf

,

with conditions

cf

5f
4f
cf

=

cf

cf

and

c

4f
5f
c

=

c

c

f .

We will refer to the object cf as the subobject associated to f .
The following lemma will be useful later on:

Lemma 2.6. Let c, c′ be objects in an idempotent complete category C, and let
f : c → c and f ′ : c′ → c′ be idempotents, denote their associated projections,
inclusions and subobjects by (p, i, cf ) and (p′, i′, c′f ), respectively. Suppose that

g : c → c′ is an isomorphism such that f ′ = gfg−1, then p′gi : cf → c′f is an
isomorphism.

Proof. We claim that the inverse of p′gi is pg−1i′. To see this, we compute:

p′gipg−1i′ = p′gfg−1i′ = p′f ′i′ = p′i′p′i′ = idc′f .

The other composite is similarly seen to be the identity.

2.3 The symmetric tensor product

2.3.1 A useful idempotent

Definition of the idempotent

Recall that A is a symmetric ribbon fusion category. Let a, b ∈ Z(A). In
defining the symmetric tensor product, we will use the following idempotent to
pick out a subobject:

Πa,b :=

a b

=
∑

i∈O(A)

di
D

a b

i .

Observe that, because we are only summing over objects i ∈ A, we have:
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Lemma 2.7. The morphism Πa,b can for all a, b ∈ Z(A) be written as

a b

=

a b

.

Proof. We compute:

a b

=

a b

=

a b

=

a b

,

where we used that the crossing of the loop with itself corresponds to using the
symmetry in A, that the self-crossings give rise to a twist (see Equation (2.3)),
and that the twist squares to 1 in a symmetric ribbon fusion category, see the
discussion below Equation 2.3.

We claim that Πa,b is an idempotent, we will prove this below, it will be a
Corollary, Lemma 2.9, of another property, Lemma 2.8, we examine first.

Cloaking

The idempotent Πa,b has a very useful property, a phenomenon called cloaking.
This lemma is a corollary of [BDSPV15, Lemma 7.1]1. We reprove it here for
convenience of the reader.

Lemma 2.8. Let b, c ∈ Z(A) and a ∈ A. Then the following identity holds:

a b c

=

a b c

.

Proof. For each summand i of the loop, we decompose the identity on ai, like
in Equation (2.5). Inserting this resolution of the identity at the leftmost part

1In the paper [BDSPV15], cloaking is phrased as taking place within a solid torus with an
incoming and outgoing boundary component. To get from this result to the one here, imagine
thickening the ring to a solid torus, giving the torus a boundary on each side, and passing the
a strand through it.
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of the loop, and pushing the morphisms along the loop to the other side, we
obtain:

a b c

=
∑

i,k∈O(A)

∑
φ∈B(ai,k)

ti
D

a b c

φ

φt

k i∗
. (2.8)

using Equation (2.6) on the rightmost part of this diagram now proves the
lemma.

Verifying idempotency

We still need to check Πa,b is idempotent.

Lemma 2.9. The morphism Πa,b in Z(A) is an idempotent of a⊗ b.

Proof. We compute

a b

=

a b

=

a b

,

where we used Lemma 2.7 in the first step and the cloaking from Lemma 2.8 in
the second. Now, we use that the loops are transparent (see Definition 2.1) to
each other, as they are sums over objects of A ⊂ Z(A). This allows us to pull
the larger loop out towards the right of the diagram. This loop then evaluates
to 1, leaving us with the string diagram representation of Πa,b. This finishes
the proof.

The associated subobject

Given a, b ∈ Z(A), the idempotent Πa,b from Lemma 2.9 has an associated
subobject denoted a ⊗Π b ∈ Z(A). Using the notation introduced in Section
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2.2.3, we introduce:

a b

4

a⊗Π b

and

a⊗Π b

5

a b

, (2.9)

satisfying

4

5
a b

a b

=

a b

and

a⊗Π b

5

4

=

a⊗Π b

. (2.10)

We have suppressed the labelling of the triangles by the idempotent Πa,b, and
will henceforth use unlabelled triangles to denote the inclusions and projections
for Πa,b.

The subobject associated to Πa,b has the crucial property that the half-
braidings associated to both factors agree, as is expressed by the following
lemma.

Lemma 2.10. Let a, b ∈ Z(A), then we have, with the notation as above:

c a b

4
=

c a b

4
and

c

5

a b

=

c

5

a b

,

for any c ∈ A.

Proof. We prove one of the relations, the other is similar. Using both the
conditions (Equation 2.10) on the projection and inclusion in the first identity,



CHAPTER 2. THE SYMMETRIC TENSOR PRODUCT 40

we see that:

c a b

4

=

c a b

4

=

c a b

4

=

c a b

4

=

c a b

4

,

(2.11)
using the fact that the loop is transparent to the c strand in the second identity
as they are both labelled by objects of A, and the cloaking from Lemma 2.8 in
the third equality.

2.3.2 The symmetric tensor product on objects

Definition on objects

Definition 2.11. Let a, b ∈ Z(A), and write Φ: Z(A) → A for the forgetful
functor (cf. Definition A.36). The symmetric tensor product a ⊗s b ∈ Z(A) of
a and b is the object (Φ(a⊗Π b), β), where a⊗Π b is the subobject associated to
Πa,b, and β is the half-braiding with components, for c ∈ A:

βc =

a⊗s bc

:=

a⊗s bc

5

4

=

c

5

4

, (2.12)

where the equality is a consequence of Lemma 2.10.

We observe that the βc indeed satisfy the hexagon equation (see Definition
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A.36 of the Drinfeld centre), which in this case reads βcc′ = (βc⊗idc′)◦(idc⊗βc′):

5

4

=

5

4

5

4

,

using Equation 2.10 and cloaking (Lemma 2.8).
Lemma 2.10 ensures this definition does not depend on a choice between a

and b. It should be noted that that the inclusion and projection for Πa,b do not
commute with the braiding, instead we have the following relation that we will
call slicing.

Lemma 2.12 (Slicing). The half-braiding on a⊗s b and the inclusion and pro-
jection maps for Πa,b interact as follows:

4
=

4
=

4

and

4

= 4 = 4 ,

where the diagonal strand is labelled by an object of A.

Proof. From the definition of the half-braiding Equation (2.12), we have, like in
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Equation (2.11):

4
=

4
5

4

=

4

=
4

,

where we made use of cloaking and the properties from (2.9). The proofs of the
rest of the identities are similar.

Symmetry of the symmetric tensor product

The symmetric tensor product is indeed symmetric:

Lemma 2.13. The symmetry in A induces an isomorphism between a⊗s b and
b⊗s a. That is, using the triangle notation for the inclusions and projections,

a⊗s b
5

4

b⊗s a

and

b⊗s a
5

4

a⊗s b

(2.13)

are mutually inverse morphisms in Z(A).

Proof. We will first establish that the symmetry morphisms are mutually inverse
in A, then we will prove they lift to morphisms in Z(A). Consider the composite

a⊗s b
5

4
5

4

a⊗s b

=

a⊗s b
5

4
a⊗s b

=

a⊗s b
5

4
a⊗s b

.

Here the unresolved crossings denote the symmetry in A. The first step comes
from replacing the inclusion followed by the projection with the idempotent (cf.
Section 2.2.3). The second uses the fact that the symmetry in A allows us to
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do Reidemeister moves which involve only the unresolved crossings. We can
now swap the strands with the braiding morphisms for a and b, undoing the
symmetry crossings between the a and b strands, and get:

a⊗s b
5

4
a⊗s b

=

a⊗s b
5

4
a⊗s b

=

a⊗s b
5

4
a⊗s b

=

a⊗s b

a⊗s b

A similar argument shows the other composite is also the identity.
We still need to establish that the morphisms are indeed morphisms in Z(A).

That is, we need to show that they commute with the braiding as defined in
Equation (2.12). We compute, using Lemma 2.12:

c a⊗s b
5

4

b⊗s a

=

c a⊗s b
5

4

b⊗s a

=

c a⊗s b
5

4

b⊗s a

=

c a⊗s b

5

4

b⊗s a

,

as desired.

Associativity

Before we discuss the associators, it is helpful to examine what at a triple
product (a⊗s b)⊗s c looks like.

Lemma 2.14. The triple products (a ⊗s b) ⊗s c and a ⊗s (b ⊗s c) have as
underlying object the subobject associated to the idempotent

a b c

, (2.14)
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interpreted as endomorphism of (ab)c and a(bc), respectively, using the (sup-
pressed) associators.

Proof. By definition, the underlying object of (a ⊗s b) ⊗s c is the subobject
associated to the idempotent

a⊗s b c

,

where the overcrossing on the strand a ⊗s b corresponds to Equation (2.12).
Spelling this out, we get:

a⊗s b

`

a

c

.

We now claim that

(a⊗s b)⊗s c

5
5

a b c

and

a b c

4
4

(a⊗s b)⊗s c

,

exhibit (a⊗sb)⊗sc as the subobject associated to the idempotent from Equation
(2.14). From the properties of the inclusions and projections involved, we see
that the composition along abc indeed is the identity. Composing along (a ⊗s
b)⊗s c, we get:

a b c

4
4

5
5

a b c

=

a b c

4
5

4
5

a b c

=

a b c

=

a b c

, (2.15)
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where in the last step we used that the rings are transparent to each other and
idempotent, the first two steps come from combining inclusion and projections
to idempotents. The argument for a⊗s (b⊗s c) is analogous.

Lemma 2.15. The associators of A induce isomorphisms between (a⊗s b)⊗s c
and a⊗s (b⊗s c) for all a, b, c ∈ Z(A).

Proof. From Lemma 2.14, we know that that the triple products have underlying
objects that are the subobjects associated to idempotents that are conjugate to
each other along the associators α : (ab)c → a(bc). This means we are in the
situation of Lemma 2.6 and the associators will induce isomorphisms between
these subobjects. We still have show that these isomorphisms are compatible
with the half-braidings, i.e. that the induced morphisms are indeed in Z(A).
To do this, we check that, explicitly inserting the associator α for this proof:

5
5

4
4

α =

5

5

4
4

α =

5
5

4
4

α =

5
5

4
4

α

=

5
5

4
4

α
,

where we made repeated use of slicing (Lemma 2.12). To pass the braiding past
the associator, we have used the naturality of the braiding.

Unit

Definition 2.16. The symmetric unit Is is the object
∑
i∈O(A) ii

∗, equipped
with the half braiding:

Isa

:=
∑

i,j∈O(A)

∑
φ∈B(ai,j)

i

j

i∗

j∗

a

φ

φ∗

a

. (2.16)
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The double strand will henceforth be used to denote the identity on Is. In the
above formula φ∗ denotes

i∗ a∗

φ∗

j∗

:=

i∗ a∗

φt

j∗

,

and φt was introduced in Definition 2.3.

We will show that this object acts as a monoidal unit for the symmetric tensor
product together with the left unitor built from evaluation morphisms

Is ⊗s b

b

5

:=
∑

i∈O(A)

Is ⊗s b

b

i 5

, (2.17)

where the double strand coming out of the inclusion on the left hand side denotes
the object Is. The right unitor is obtained by reflecting the above diagram in
a vertical line. We claim, and prove below in Lemma 2.18, that the left unitor
has an inverse given by:

Is ⊗s b

b

4
:=

∑
i∈O(A)

di
D

Is ⊗s b

b

i
4

, (2.18)

and the inverse for the right unitor is correspondingly given by reflecting the
above diagram in a vertical line. To prove these statement and that this indeed
gives the monoidal unit, we will make use of the following property we will refer
to as snapping :
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Lemma 2.17 (Snapping). For any c ∈ Z(A) we have:

Is c

=

Is c

.

Proof. Unpacking the definition of the half-braiding on Is, we get:

=
∑

i,j,k∈O(A)

∑
φ∈B(ki,j)

dk
D

i

j

k
φ

φ∗

. (2.19)

We can manipulate the summands on the right hand side, using Equation
(2.1), to get:

i

j

k
φ

φ∗ =

i

j

k

φ

φ∗
=

i

j

k

φ

φt

,

where in the first equality a self-intersection gave a twist (see Equation (2.3))
on the k strand. The third equality uses the definition of φ∗ combined with:

φ

k i

j

= φ

k i

j

, (2.20)

which follows from the naturality of the twist, together with the fact that in a
symmetric fusion category the twist is a monoidal automorphism of the identity
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functor that squares to 1. We can now apply Lemma 2.5 to obtain, performing
the sum over φ and k,

=
∑

i,j∈O(A)

dj
D

i

j

=
∑

i,j∈O(A)

dj
D

i

j

= ,

where in the second equality we cancelled twists with self-intersections.

The object Is does indeed act as a unit for the symmetric tensor product on
Z(A):

Lemma 2.18. The symmetric tensor product of Is with any object b ∈ Z(A)
is isomorphic to b as object in Z(A), along the isomorphism given in Equation
(2.17). Similarly, b ⊗s Is ∼= b, along the isomorphisms given by reflecting the
diagrams above in a vertical line.

Proof. We first prove that the morphisms from Equations (2.17) and (2.18)
are inverse to each other, and then establish they are morphisms in Z(A).
Composing along Is ⊗s b, we see we need to check that:

b

5

b

4
=

b

b

=

b

b

=

b

b

, (2.21)

where we used snapping (Lemma 2.17), and that in the last steps the rings come
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off an evaluate to a factor 1. For the other composition, note that:

Is ⊗s b

=

Is ⊗s b

b

5

4

=

Is ⊗s b

b

5

4

,

using snapping in the last step.
To see that the morphisms are indeed morphisms in Z(A), we check that:

Is ⊗s b

b

5
=

Is ⊗s b

b

5

=

Is ⊗s b

b

5
,

where the first step is Lemma 2.12, and the second step uses Equation (2.2).
The proof that b⊗s Is ∼= b along the specified isomorphisms is analogous.

For Is to be a unit for the symmetric tensor product, the isomorphisms from
Lemma 2.18 need to satisfy the triangle equality, that is:

(a⊗s Is)⊗s b a⊗s (Is ⊗s b)

a⊗s b .

commutes for all a, b ∈ Z(A), where the downwards maps are the unitor iso-
morphism and the top is the associator.

Lemma 2.19. The isomorphisms from Lemma 2.18 satisfy the triangle equality.

Proof. We will show that the clockwise composite a ⊗s b → (a ⊗s Is) ⊗s b →
a⊗s (Is⊗s b)→ a⊗s b is the identity on a⊗s b. That is, we are considering the
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composite of

a⊗s (Is ⊗s b)
5

4
a⊗s b

5
,

5
5

4
4

a⊗s (Is ⊗s b)

(a⊗s Is)⊗s b

and

a⊗s b
5

4
(a⊗s Is)⊗s b

4
.

When composing, we encounter Equation (2.15) and its mirror image. Plugging
this in right away and remembering the rings are idempotent, we get

a⊗s b
5

4
a⊗s b

=

a⊗s b
5

4
a⊗s b

=

a⊗s b

.

Here the first equality is an application of snapping to the two horizontal rings
(Lemma 2.17), the second uses the fact that the rings cancel with the inclusion
and projection morphisms.

2.3.3 The symmetric tensor product as a functor

We have so-far given objectwise definitions of the ingredients needed to define
the symmetric tensor product. In this section we will combine these definitions
to make the symmetric tensor product into a monoidal structure. The final
ingredient needed is a definition of the symmetric tensor product on morphisms.

Definition on morphisms

Definition 2.20. The symmetric tensor product

⊗s : Z(A) � Z(A)→ Z(A)
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is a symmetric monoidal structure on Z(A) defined on objects in Definition
2.11. On morphisms f : a→ a′, g : b→ b′, it is given by

a b

f ⊗
Vect

g

a′ b′

7→

a⊗s b

f g

5

4

a′ ⊗s b′

. (2.22)

The unit for this monoidal structure is given in Definition 2.16. The asso-
ciators are induced by the associators of A as described in Lemma 2.15. The
symmetry is induced by the symmetry morphisms in A, as described in Lemma
2.13.

Lemma 2.21. The prescription from Definition 2.20 is a functor.

Proof. Observe that we have, for f, f ′ and g, g′ morphisms in Z(A):

f g

5

4

f ′ g′

5

4

=

f g

5

f ′ g′

4

=

f g

5

f ′ g′

4

=

f g

5

4

f ′ g′

5

4

=

f g

5

4

f ′ g′
,

where in the second step we used naturality of the braiding in Z(A).

The symmetric tensor product as symmetric monoidal structure

Now that we have promoted ⊗s to a functor, it makes sense to ask whether it
defines a symmetric tensor product on Z(A).

To see ⊗s is weakly associative, note that we have shown that the maps in-
duced from the associators of A give isomorphisms between the two possibilities
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for the triple product (Lemma 2.15). As the associators for A satisfy the pen-
tagon equations, so will the induced maps. Furthermore, an argument analogous
to the proof of functoriality will establish that these isomorphisms are natural.

For weak unitality, observe that, in Lemmas 2.18 and 2.19, we have established
Is as the unit for ⊗s.

To establish symmetry of ⊗s, we recall that we have shown that the symmetry
in A induces isomorphisms between the swapped orders of taking the symmetric
tensor product (Lemma 2.13). These induced morphisms will give a natural
transformation that satisfies the hexagon equations.

Collecting these observations, we have therefore shown that:

Theorem 2.22. (Z(A),⊗s, Is) is a symmetric monoidal category.

The forgeful functor is lax monoidal

The goal of this section is to establish:

Proposition 2.23. The forgetful functor Φ: (Z(A),⊗s)→ (A,⊗A) is symmet-
ric lax monoidal (see Definition A.22).

Proof. We have to provide a natural transformation λ from Φ(−)Φ(−) to Φ(−⊗s
−), so for each c = (a, β) and c′ = (a′, β′) a map:

µc,c′ : aa
′ → Φ(c⊗s c′) = Φ(c⊗Π c

′).

We claim that the image under Φ of the projection pc,c′ associated to Πc,c′ will
work. First of all, we observe that the forgetful functor is strictly monoidal
for ⊗c (as the monoidal structure on the Drinfeld centre is defined in terms of
the one on A), so the image of Φ(pc,c′) = µc,c′ is certainly a map between aa′

and Φ(c ⊗Π c′). As the associators are defined using the projection pc,c′ , this
map is automatically compatible with the associators, c.f. the first diagram in
Definition A.22.

Next, we need to provide a map

µ0 : IA → Φ(Is) =
⊕

i∈O(A)

ii∗,

we take this to be D times the inclusion I of I ∼= II into Is. Tracing trough the
second compatibility diagram in Definition A.22, the composite along the right
hand side of the diagram computes as:

c

I

4
5 =

c

I

=

c

,
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where the first step uses snapping (the resulting ring on the top comes off
immediately), and the second step comes from the observation that the unit
braids trivially with all other objects.

Finally, we have to show that the symmetry for ⊗s is sent to the symmetry
in A, but this follows directly from its definition in Lemma 2.13.

Basic Properties of the Symmetric Tensor Product

In this section we will do some basic computations with the symmetric tensor
product, that tell us how the symmetric tensor product behaves with respect to
the subcategory A ⊂ Z(A). We start with:

Lemma 2.24. Let a and a′ be objects of A ⊂ Z(A). Then

a⊗s a′ = a⊗c a′.
Proof. The object a ⊗s a′ is defined in terms of the suboject associated to
Πa,a′ : a⊗c a′ → a⊗c a′. As the objects of A are transparent to each other, we
see that Πa,a′ = ida⊗ca′ , and the result follows.

The subcategory A is orthogonal to the rest of Z(A), in the sense that:

Lemma 2.25. Let a ∈ A and let c ∈ Z(A) be a simple object not in A. Then:

a⊗s c = 0,

where 0 denotes the zero object of Z(A).

Proof. Recall that a⊗s c is defined using the subobject associated to the idem-
potent Πa,c from Lemma 2.9, and is therefore zero if and only if the idempotent
is zero on a ⊗c c. Using that the objects of A are transparent with respect to
each other we see that the idempotent computes as:

Πa,c =

a c

,

which is zero if endomorphism of the simple c defined by the right part of
the diagram is zero. This in turn happens if and only if the trace of this
endomorphism is zero. Its trace is by definition:∑

i∈O(A)

di
D
S(c, i),

where S(c, i) is the S-matrix entry (see [Müg03b]) for c and i. By [Müg03b,
Lemma 2.13], this trace computes as:∑

i∈O(A)

di
D
S(c, i) = dc′χZ2(A,Z(A))(c).
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Here χZ2(A,Z(A)) denotes the characteristic function on the objects of Z2(A,Z(A)).
The centraliser of A in its Drinfeld centre is A, so all in all we see that Πa,c = 0
if c is not in A. Hence a⊗s c is zero for all simple c not in A.

These two results combine to give:

Proposition 2.26. Let a ∈ A and c ∈ C. Denote by cA the maximal summand
of c that is an object of A. Then:

a⊗s c = a⊗c cA.

Note that this also implies, by associativity and symmetry of the symmetric
tensor product, that c⊗s d is never an object of A if c and d have no summands
in A.

We can also prove the following relationship between the symmetric unit and
the convolution tensor product between objects of a and objects of Z(A).

Lemma 2.27. Let a ∈ A and z ∈ Z(A). Then:

a⊗c z ∼= (a⊗c Is)⊗s z.

Proof. The object (a⊗cIs)⊗sz is computed in terms of the idempotent Πa⊗cIs,z.
As a is transparent, we have that:

Πa⊗cIs,z = ida ⊗c ΠIs,z = ida ⊗c idz,

where in the second step we used that Is is the unit for ⊗s. The result now
follows.

2.4 The symmetric tensor product under Tan-
naka duality

Any symmetric fusion category is, by Tannaka Duality (Theorem A.35), equiv-
alent to the representation category of a finite (super-)group. Furthermore, as
discussed in Section A.2.3, the Drinfeld centre of such a representation category
can be viewed as the category of equivariant vector bundles over (the underly-
ing group of) this (super-)group (Definition A.37). This category admits two
obvious tensor products, the convolution tensor product (Definition A.39) and
the fibrewise tensor product (Definition 2.29).

The goal of this section is to first show that for A Tannakian (Definition
A.32), the symmetric tensor product on Z(A) translates to the fibrewise tensor
product when viewing the Drinfeld centre as equivariant vector bundles. After
this, we will examine what the symmetric tensor product becomes when the
symmetric fusion category is super-Tannakian. We will see that in this case,
the symmetric tensor product translates to a twisted version of the fibrewise
tensor product that takes into account the super-group structure.
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2.4.1 Tannakian Case

In this section we will examine what the symmetric tensor product on Z(A)
gives in the case where A = Rep(G), where G is a finite group. We will show
that:

Theorem 2.28. Let G be a finite group. Then the equivalence E from Equation
(A.16) between (Z(Rep(G)),⊗s) and (VectG[G],⊗f ) is a symmetric monoidal
equivalence. Here ⊗f denotes the fibrewise tensor product from Definition 2.29.

The proof of this theorem will take up the rest of this section. We start by
giving the definition of the fibrewise tensor product.

Definition 2.29. The fibrewise tensor product on VectG[G] is given by

(V ⊗f W )g = Vg ⊗Wg,

with G-action ρV ⊗ ρW .

This tensor product is clearly symmetric with symmetry given by the switch
map of vector spaces.

We will now examine what the idempotent Πa,b looks like in VectG[G]. In
particular, we will establish the following:

Lemma 2.30. Let V,W ∈ VectG[G] then the idempotent ΠV,W : V ⊗c W →
V ⊗cW is given by

ΠV,W |Vg1⊗Wg2
=

{
id for g1 = g2

0 otherwise.

Proof. By definition, ΠV,W is given by

∑
i∈IrRep(G)

di
D

V W

i i∗ ,

where we put the label i∗ to emphasise the object going up is i∗. Recall, from
Section A.2.3 that we are viewing i ∈ Rep(G) as an object in VectG[G] by
regarding it as a vector bundle supported by [e]. The convolution tensor product
(Definition A.39) between any bundle E and a bundle F = Fe supported by [e]
has fibres given by

(E ⊗ F )g = Eg ⊗ Fe.
We claim that ΠV,W acts as a sum of endomorphisms of the summands Vg1 ⊗

Wg2 of the fibres over g = g1g2 of V ⊗c W . The braidings on the V and W
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strands with i and i∗ will individually fibrewise be automorphisms of Vg1⊗i and
i∗⊗Wg2 . Precomposing with co-evaluation and postcomposing with evaluation
for i combines these to automorphisms of Vg1⊗Wg2 , for each i in the sum. This
means the idempotent will be a direct sum of maps

ΠVg1 ,Wg2
: Vg1 ⊗Wg2 → Vg1 ⊗Wg2 ,

for each possible combination of fibres Vg1 and Wg2 .
We now want to compute what these automorphisms are. By the definition

of the braiding (Definition A.40), each of these maps ΠVg1 ,Wg2
is given by the

composite of the evaluation and coevaluation for i with, denoting by ρi(g) the
action of G on the representation i,

Vg1 ⊗ i⊗ i∗ ⊗Wg2

idV ⊗idi⊗ρi
∗

(g2)⊗idW−−−−−−−−−−−−−−→ ⊗Vg1 ⊗ i⊗ i∗ ⊗Wg2

and

Vg1 ⊗ i⊗ i∗ ⊗Wg2

idV ⊗ρi(g1)⊗idi⊗idW−−−−−−−−−−−−−−→ Vg1 ⊗ i⊗ i∗ ⊗Wg2 ,

where we have gotten rid of unnecessary switch maps between vector spaces.
By unitarity of the representations, ev ◦ idi ⊗ ρi

∗
(g2) = ev ◦ ρi(g−1

2 )⊗ idi∗ . The
evaluation and coevaluation combine to a trace, so we see that

ΠVg1 ,Wg2
=

∑
i∈IrRep(G)

di
D

tr(ρi(g−1
2 )ρi(g1)) =

∑
i∈IrRep(G)

di
D
χi(g

−1
2 g1),

where χi denotes the character of i. We recognise the right hand side as 1
D times

the character of the group algebra, viewed as a representation of G, evaluated
on g−1

2 g1. As the group acts freely on itself, this character is D times the
characteristic function of the conjugacy class of the identity element. This
proves the lemma.

Corollary 2.31. The subobject associated to ΠV,W has fibres

(V ⊗Π W )g′ =
⊕
g2=g′

Vg ⊗Wg. (2.23)

To compare the symmetric tensor product to the fibrewise product, we need
to see what effect equipping this object with the half-braiding from Equation
(2.12) has. We claim that this replaces g2 by g. This will establish:

Lemma 2.32. For any V,W ∈ VectG[G],

E(V ⊗sW ) = V ⊗f W.

Proof. Unpacking the definition of the half-braiding, we see that the braiding on
V ⊗sW with respect to a ∈ Rep(G) is given by, on each summand in Equation
(2.23),

aVgWg

sVg,a⊗idW ◦(ρa(g)⊗idV⊗W )
−−−−−−−−−−−−−−−−−−→ VgaWg

sWg,a−−−−→ VgWga,
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where the first map is the braiding from Equation (A.40) and the second the
symmetry in A. By monoidality of the symmetry s, this composite is the same
as:

aVgWg

sa,VgWg◦(ρa(g)⊗idV⊗W )
−−−−−−−−−−−−−−−−→ VgWga.

Comparing this with Definition (A.40), this is saying that V ⊗sW is the bundle
with fibres

(V ⊗sW )g = Vg ⊗Wg,

and this is what we wanted to show.

Combining Corollary 2.31 and Lemma 2.32 now proves Theorem 2.28.

2.4.2 Super-Tannakian Case

We will now examine the case where A is super-Tannakian (Definition A.32)
and hence, by Deligne’s Theorem A.35, equivalent to Rep(G,ω) for some finite
super-group (Definition A.33). The structure of the Drinfeld centre in this case
is discussed in Section A.2.3. The Drinfeld centre is still VectG[G]. However,
the inclusion of Rep(G,ω) into VectG[G] will be different, and the symmetric
tensor product gives rise to a new tensor product on VectG[G].

Definition 2.33. Let (G,ω) be a finite super-group. The fibrewise super-
tensor product of homogeneous (see Definition A.47) V,W ∈ VectG[G] is the
G-equivariant vector bundle V ⊗ωf W with fibres

(V ⊗ωf W )g = Vω|W |gWω|V |g,

and G-action given by the tensor product of the G-actions.

Remark 2.34. We can interpret Definition 2.33 as follows: for every choice of
central order 2 element of a finite group G, there is a symmetric tensor product
on VectG[G].

In this section, we will prove the following:

Theorem 2.35. Let (G,ω) be a finite super-group. Then the equivalence be-
tween (Z(Rep(G,ω),⊗s) and (VectG[G],⊗ωf ) is symmetric monoidal.

The main difficulty in proving this Theorem is that, as asserted by Proposition
A.45, the inclusion functor from Rep(G,ω) to Z(Rep(G,ω)) does not only hit
bundles supported by [e]. This means we have revisit Lemma 2.30 and its proof.
We will do this step by step below.
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The starting point is again that ΠV,W is given by

∑
i∈IrRep(G,ω)

di
D

V W

i i∗ . (2.24)

Recall (see Definition A.33), that the i are either even or odd, and that (Propo-
sition A.45) even representations are viewed as bundles supported by [e], while
odd representations are viewed as bundles supported by [ω].

Each even i summand in Equation (2.24) will, just as in the Tannakian
case, contribute an automorphism of each Vg1 ⊗ Wg2 given by multiplication
by χi(g

−1
2 g1), regardless of the parity of V and W .

Now suppose that i is odd. Since ω is the only element its conjugacy class,
analogous reasoning to the one applied in the Tannakian case tells us that for
such odd i we get an endomorphism of Vg1 ⊗Wg2 , let us denote it by

Πi
Vg1 ,Wg2

: Vg1 ⊗Wg2 → Vg1 ⊗Wg2 .

We now want to compute what this map is. It is given by the composite of the
appropriate evaluation and coevaluation with

Vg1 ⊗ i⊗ i∗ ⊗Wg2

(−1)|V |idV ⊗idi⊗ρi
∗

(g2)⊗idW−−−−−−−−−−−−−−−−−−−→ Vg1 ⊗ i⊗ i∗ ⊗Wg2

and

Vg1 ⊗ i⊗ i∗ ⊗Wg2

(−1)|W |idV ⊗ρi(g1)⊗idi⊗idW−−−−−−−−−−−−−−−−−−−→ Vg1 ⊗ i⊗ i∗ ⊗Wg2 ,

where |V |, |W | ∈ {0, 1} denote the parity of V and W , as by restricting to
simple objects we can assume V and W to be homogeneous, see Lemma A.46.
The signs come from the braiding between V and i and W and i∗, respectively.
From here, we can apply the same arguments as in the Tannakian case to arrive
at:

ΠVg1 ,Wg2
=

∑
i∈IrRep0(G,ω)

di
D

tr(ρi(g−1
2 g1))+

∑
i∈IrRep1(G,ω)

di
D

(−1)|V |+|W |tr(ρi(g−1
2 g1)),

where we have denoted sets of representatives of the even and odd simple objects
of Rep(G,ω) by IrRep0(G,ω) and IrRep1(G,ω), respectively. Now, recall that,
by definition, ω acts as id on even and as −id on odd i. This means that

χi(ω
|V |+|W |g−1

2 g1) =

{
χi(g

−1
2 g1) for i even

(−1)|V |+|W |χi(g
−1
2 g1) for i odd

.
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We can use this to rewrite:

ΠVg1 ,Wg2
=

∑
i∈IrRep(G)

di
D
χi(ω

|V |+|W |g−1
2 g1) =

{
id for g−1

2 g1 = ω|V |+|W |

0 otherwise
,

which is the super version of Lemma 2.30. This means that, analogous to
Corollary 2.23, we have:

Corollary 2.36. The subobject associated to ΠV,W is the equivariant vector
bundle with fibres:

(V ⊗Π W )g′ =
⊕

g2=ω|V |+|W |g′

Vω|V |+|W |gWg =
⊕

g2=ω|V |+|W |g′

Vω|W |gWω|V |g,

for V and W homogeneous.

As we can decompose any vector bundle into homogeneous summands, this
Corollary completely determines the subobject underlying the symmetric tensor
product of any two vector bundles.

Following the exposition of the Tannakian case, our next task is now to deter-
mine what the half-braiding (Equation (2.12)) is that we will equip this object
with to form the symmetric tensor product.

We will again compute what this braiding is summandwise. So, let a ∈
Rep(G,ω) be homogeneous and Vω|V |+|W |gWg be a summand in the fibre over

ω|V |+|W |g2. Unpacking the definition of the half-braiding, we get, analogously
to the Tannakian case:

aVω|V |+|W |gWg
(−1)|V ||a|σV,a⊗idW−−−−−−−−−−−−−→Vω|V |+|W |gaWg

(idVW⊗ρa(g))◦(idV ⊗σW,a)−−−−−−−−−−−−−−−−−−→ Vω|V |+|W |gWga,

where σ denotes the switch map in vector spaces and, for readability, we have
dropped the subscripts on V and W in writing down the map. The sign
(−1)|V ||a| comes from the symmetry in Rep(G,ω). This composes to:

aVω|V |+|W |gWg
(−1)|V ||a|(idV⊗W⊗ρa(g))◦σa,VW−−−−−−−−−−−−−−−−−−−−−−→ Vω|V |+|W |gWga,

Observe that:
(−1)(|V |)|a|ρa(g) = ρa(ω|V |g),

so the half-braiding becomes (using naturality of the switch map):

aVω|V |+|W |gWg
σa,VW ◦(idV⊗W⊗ρa(ω|V |g))−−−−−−−−−−−−−−−−−−→ Vω|V |+|W |gWga.

Now, comparing this with the definition of the half-braiding in VectG[G] (see
Equation (A.40)), this indicates that Vω|V |+|W |gWg is, in V ⊗s W , a summand

of the fibre over ω|V |g. We have found:

(V ⊗sW )ω|V |g = Vω|V |+|W |gWg.
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or, reindexing:
(V ⊗sW )g = Vω|W |gWω|V |g.

This concludes the proof of Theorem 2.35.



Chapter 3

The Drinfeld Centre as
2-Fold Tensor Category

3.1 Introduction

By the famous Eckmann-Hilton argument, any two compatible (mutually ho-
momorphic) monoid structures on a set are commutative and equal. Similarly,
one can show that any two strongly compatible monoidal structures on a cat-
egory are naturally isomorphic and braided. If one relaxes the compatibility
to be lax, (so not given by a natural isomorphism, but rather just a monoidal
transformation), the Eckmann-Hilton argument no longer holds. This allows
for the existence of lax 2-fold monoidal categories, and, in the linear case, lax
2-fold tensor categories.

The goal for this Chapter is to show that the Drinfeld centre of a symmetric
fusion category is a 2-fold tensor category for its convolution (usual) tensor
product together with the symmetric tensor product defined in Chapter 2. It
turns out that, in fact, these tensor products are also oplaxly compatible, and
that the lax and oplax structures are one-sided inverses for each other. This leads
us to defining the notion of strongly inclusive bilax 2-fold monoidal category
(Definition 3.2). Additionally, the braiding and symmetry for the convolution
and symmetric tensor product are compatible with the lax structure. All in
all, we will show (Theorem 3.5) that the Drinfeld centre of a symmetric fusion
category is a vertically symmetric braided strongly inclusive bilax 2-fold tensor
category.

The outline of this Chapter is as follows. We will first define, in Section 3.2.1,
the notion of lax 2-fold monoidal category. We spell out what it means for such
a category to be braided (or symmetric), and capture the extra compatibilities
that the structures on the Drinfeld centre of a symmetric fusion category exhibit
in definitions. The rest of this Chapter, Section 3.3, is then devoted to proving
the main Theorem 3.5 of this Chapter.

61
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3.2 Preliminaries

In this section we set up the theory of lax 2-fold monoidal categories.

3.2.1 Lax 2-fold monoidal categories

The following definition is inspired by [BFAV03], but allows for the units of the
monoidal structure to be different.

Definition 3.1. Let C be a category, equipped with two monoidal structures
⊗1 and ⊗2, with units I1 and I2, respectively. The associator and right and
left unitor isomorphisms for monoidal structures will be denoted α1, ρ1, λ1 and
α2, ρ2, λ2, respectively. Then (C,⊗1,⊗2) is called lax 2-fold monoidal if there
exists a natural transformation η with components

ηc,c′,d,d′ : (c⊗1 c
′)⊗2 (d⊗1 d

′)→ (c⊗2 d)⊗1 (c′ ⊗2 d
′),

and morphisms

u0 : I2 → I1
u1 : I1 ⊗2 I1 → I1
u2 : I2 → I2 ⊗1 I2.

We will refer to these morphisms as compatibility morphisms. These morphisms
are such that the following diagrams commute for all c, c′, d, d′ ∈ C.

(a)

I2 ⊗1 I1 I1 ⊗1 I1

I2 I1

u0⊗id

ρ1 ρ1

u0

,

together with the corresponding diagram for λ1, and the corresponding
diagrams for λ2 and ρ2,

(b)

I2 ⊗2 (d⊗1 d
′) d⊗1 d

′

(I2 ⊗1 I2)⊗2 (d⊗1 d
′) (I2 ⊗2 d)⊗1 (I2 ⊗2 d

′),

u2⊗2id

λ2

η

λ2⊗2λ2

where λ2 is the left-unitor for ⊗2. We similarly require the corresponding
diagrams for the right-unitor to commute.

(c)

(I1 ⊗1 c
′)⊗2 (I1 ⊗1 d

′) (I1 ⊗2 I1)⊗1 (c′ ⊗2 d
′)

c′ ⊗2 d
′ I1 ⊗1 (c′ ⊗2 d

′),

η

λ1⊗2λ1 u1⊗2id

λ1

where λ1 denotes the left-unitor for ⊗1, and the corresponding diagram for
the right-unitor is also required to commute.
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(d)

(I1 ⊗2 I1)⊗2 I1 I1 ⊗2 (I1 ⊗2 I1)

I1 ⊗2 I1 I1 I1 ⊗2 I1,

α2

u1⊗2id id⊗2u1

u1

u1

and the corresponding diagram for u2 and α1,

(e)

((c⊗1 d)⊗2 (c′ ⊗1 d
′))⊗2 (c′′ ⊗1 d

′′) (c⊗1 d)⊗2 ((c′ ⊗1 d
′)⊗2 (c′′ ⊗1 d

′′))

((c⊗2 c
′)⊗1 (d⊗2 d

′))⊗2 (c′′ ⊗1 d
′′) (c⊗1 d)⊗2 ((c′ ⊗2 c

′′)⊗1 (d′ ⊗2 d
′′))

((c⊗2 c
′)⊗2 c

′′)⊗1 ((d⊗2 d
′)⊗2 d

′′) (c⊗2 (c′ ⊗2 c
′′))⊗1 (d⊗2 (d′ ⊗2 d

′′)),

α2

η⊗2id id⊗2η

η η

α2⊗1α2

where α2 denotes the associator for ⊗2.

(f)

((c⊗1 c
′)⊗1 c

′′)⊗2 ((d⊗1 d
′)⊗1 d

′′) (c⊗1 (c′ ⊗1 c
′′))⊗2 (d⊗1 (d′ ⊗1 d

′′))

((c⊗1 c
′)⊗2 (d⊗1 d

′))⊗1 (c′′ ⊗2 d
′′) (c⊗2 d)⊗1 ((c′ ⊗1 c

′′)⊗2 (d′ ⊗1 d
′′))

((c⊗2 d)⊗1 (c′ ⊗2 d
′))⊗1 (c′′ ⊗2 d

′′) (c⊗2 d)⊗1 ((c′ ⊗2 d
′)⊗1 (c′′ ⊗2 d

′′)),

α1⊗2α1

η η

η η

α1

where α1 denotes the associator for ⊗1.

Definition 3.2. Dualising Definition 3.1 yields the notion of oplax 2-fold monoidal1.
A category that is both lax and oplax 2-fold monoidal will be called bilax 2-fold
monoidal.

If C is a bilax 2-fold monoidal category with lax compatibility morphisms
η, u0, u1, u2 and ζ, v0, v1, v2 that satisfy

η ◦ ζ = id, u0 ◦ v0 = id, u1 ◦ v2 = id, v1 ◦ u2 = id,

then C will be called an inclusive bilax 2-fold monoidal category. If, additionally,
u1 and v2 are isomorphisms, we will call C strongly inclusive.

The notion of bilax 2-fold monoidal is known in the community. The notion
of (strong) inclusivity is introduced here to capture the structure Z(A) has.

Definition 3.3. Let (C,⊗1,⊗2) be lax 2-fold monoidal and let β1 be a braiding
for ⊗1. Then C is called horizontally braided lax 2-fold monoidal if the braiding
is such that the following diagrams commute:

(a)

I2 I2 ⊗1 I2

I2 ⊗1 I2 ,

u2

u2
β1

1This also corresponds to switching the roles of ⊗1 and ⊗2.
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(b)

(c⊗1 c
′)⊗2 (d⊗1 d

′) (c⊗2 d)⊗1 (c′ ⊗2 d
′)

(c′ ⊗1 c)⊗2 (d′ ⊗1 d) (c′ ⊗2 d
′)⊗1 (c⊗2 d)

η

β1⊗2β1 β1

η

.

If β2 is a braiding for ⊗2 and satisfies the analogous compatibility with η and u1,
we call C vertically braided. If C is both horizontally and vertically braided we
will refer to it as braided lax 2-fold monoidal. If, in a braided lax 2-fold monoidal
category, the horizontal (resp. vertical) braiding is symmetric the category will
be called horizontally (reps. vertically) symmetric.

If C is additionally a bilax 2-fold monoidal category, and the horizontal or
vertical braiding satisfies the corresponding compatibility with the oplax com-
patibility morphisms, C will be called (horizontally or vertically) braided bilax
2-fold monoidal.

Definition 3.4. When a lax 2-fold monoidal category C is enriched and tensored
over Vect, and the monoidal structures are tensor structures, we will call C a
lax 2-fold tensor category.

3.3 The Drinfeld Centre as a Lax 2-Fold Monoidal
Category

This section is devoted to proving the main theorem of this Chapter:

Theorem 3.5. Let A be a symmetric fusion category, and let ⊗c and ⊗s denote
its usual and its symmetric tensor product (Definitions 2.11 and 2.22), respec-
tively. Then (Z(A),⊗c,⊗s) is a vertically symmetric braided strongly inclusive
bilax 2-fold tensor category, cf. Definitions 3.1, 3.2, 3.3 and 3.4.

The structure of this section is as follows. We will first define the compatibility
morphisms from Definition 3.1, we will denote these by (η, u0, u1, u2) for the
lax direction and (ζ, v0, v1, v2) for the oplax direction. We will then proceed to
check their coherence, combining the necessary proofs for the two cases whenever
possible.

3.3.1 Lax Compatibility Morphisms

The comparison morphism

The following lemma allows us to define η and ζ.

Lemma 3.6. Let c, c′, d, d′ ∈ Z(A), then the following string diagrams define
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morphisms in Z(A):

ζc,d,c′,d′ =

c⊗s d c′ ⊗s d′
5 5

4

(c⊗c c′)⊗s (d⊗c d′)

and ηc,c′,d,d′ =

(c⊗c c′)⊗s (d⊗c d′)
5

4

c⊗s d

4

c′ ⊗s d′

,

(3.1)
respectively. Here the unresolved crossing denotes the symmetry in A, c.f. Sec-
tion 2.2. These morphisms exhibit the object (c⊗s d)⊗c (c′⊗s d′) as a subobject
of (c⊗c c′)⊗s (d⊗c d′) with inclusion ζc,d,c′,d′ and projection ηc,c′,d,d′ .

Proof. We have to show that the composite along (c⊗c c′)⊗s (d⊗c d′) of the two
maps is the identity, and that they define morphisms in Z(A). For the former:

c⊗s d c′ ⊗s d′
5 5

4

5

4

c⊗s d

4

c′ ⊗s d′

=

c⊗s d c′ ⊗s d′
5 5

4

c⊗s d

4

c′ ⊗s d′

,

where we have replaced a projection followed by an inclusion with the idempo-
tent from Lemma 2.9. We can now pull the top of the ring up and the bottom of
the ring down, using the way the unresolved and resolved interact, see Equation
(2.2), to get:

c⊗s d c′ ⊗s d′
5 5

4

c⊗s d

4

c′ ⊗s d′

=

c⊗s d c′ ⊗s d′
5 5

4

c⊗s d

4

c′ ⊗s d′

,

where in the last step we used the slicing from Lemma 2.12. In the last diagram,
the ring comes out, and the diagram evaluates to the identity on (c ⊗s d) ⊗c
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(c′ ⊗s d′), as desired. To show that the inclusion and projection are morphisms
in Z(A), we compute, for a ∈ A ⊂ Z(A):

c⊗s d c′ ⊗s d′

5 5

4

(c⊗c c′)⊗s (d⊗c d′)

a

=

c⊗s d c′ ⊗s d′
5 5

4

(c⊗c c′)⊗s (d⊗c d′)

a

=

c⊗s d c′ ⊗s d′
5 5

4

(c⊗c c′)⊗s (d⊗c d′)

a

=

c⊗s d c′ ⊗s d′
5 5

4

(c⊗c c′)⊗s (d⊗c d′)

a

,

where we made repeated use of slicing, and use of Equation (2.2) in the second
equality.

Lemma 3.7. The morphisms from Equation (3.1) combine to give natural
transformations.

Proof. Let f : c1 → c2, f ′ : c′1 → c′2, g : d1 → d2 and g′ : d′1 → d′2 be morphisms
in Z(A). Using the definition of ⊗s on objects, Equation (2.22), we compute:

5 5

f g f ′ g′

4 4

5 5

4

=

5 5

f gf ′ g′

4

,

where we replaced projections followed by inclusions by the idempotent from
Lemma 2.9, and used the naturality of the symmetry and braiding, as well as
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Equation (2.2) to move the rings down and the morphisms up. We can now use
cloaking (Lemma 2.8) for the bottom strand of the top ring with the bottom
ring to get:

5 5

f gf ′ g′

4

=

5 5

4
5

f gf ′ g′

4

.

The last equality follows from the fact that the rings are transparent to each
other. This we means we can bring the larger ring up, and the smaller ring
down using Equation (2.2). We can then cancel them with the projection and
inclusion respectively, cf. Equation (2.10).

The proof of naturality for the other map in Equation (3.1) is obtained by
reading the diagrams top to bottom.

With this Lemma in hand, we can define η and ζ to be the natural transfor-
mations with components ηc,c′,d,d′ and ζc,d,c′,d′ defined in Equation (3.1).

Unit compatiblity

We will now produce the required morphisms u0, u1, u2 and v0, v1, v2 relating
the units for the two tensor products on Z(A).

We start with the following observation:

Lemma 3.8. The following are morphisms in Z(A)

v0 : Ic
⊕ tiD ¯coevi−−−−−−→⊕

i∈O(A) i⊗c i∗ =:

u0 : Is
⊕ev−−→ Ic =: .

These morphism exhibit the unit Ic for ⊗c as a subobject of the unit Is for ⊗s
with inclusion v0 and projection u0.

Proof. The fact that these maps constitute a inclusion and projection pair is
clear. We still need to show that these morphisms are morphisms in Z(A), i.e.
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that they commute with the braiding. We compute:

a

=
∑

i,j∈O(A)

∑
φ∈B(aj,i)

tj
D

i i∗

φ

φt

a

a

j∗

=

a

.

A similar, but simpler, argument shows that u0 commutes with braiding.

To produce the morphisms u1 and v2, we note that:

Lemma 3.9. The objects Ic ⊗s Ic and Ic are canonically isomorphic.

Proof. Recall that the object Ic⊗s Ic is a subobject of Ic⊗c Ic = Ic, and therefore
canonically isomorphic to Ic (the convolution and symmetric product agree on
A ⊂ Z(A)), as object in A. We further observe that equipping Ic with the
braiding (2.12) does not change its braiding.

We set u1 : Ic ⊗s Ic
∼=←→ Ic : v2.

For u2 and v1, we use the following:

Lemma 3.10. The object Is is a subobject of Is ⊗c Is, with inclusion and pro-
jection given by

u2 = =
∑

i∈O(A)

ti
D

ii∗

ii∗ ii∗

and v1 = =
∑

i,j∈O(A)

δi,j∗

ii∗

ii∗ jj∗

,

repectively. δi,j∗ denotes the Kronecker delta symbol that is 1 when i = j∗ and
zero otherwise. In particular, u2 and v1 are morphisms in Z(A).

Proof. It is clear that u2 and v1 constitute an inclusion-projection pair, com-
posing along of Is⊗c Is gives

∑
i di

ti
D = 1 times the identity on Is. We still need

to establish they are indeed morphisms in Z(A). That is, we need to show that

= and = .
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Unpacking the definition (Equation (2.16)) of the half-braiding for Is, we see
that we get for a ∈ A:

=
∑

j,k∈O(A)

∑
φ,φ′∈B(ak,j)

tk
D

k k∗

j j∗j∗ j

φ∗
φ′

a

a

φ

φ′∗

a

k

. (3.2)

We can manipulate the middle part of the summands to see:

j∗ j

φ∗
φ′

a

k

=

j∗ j

φt

φ′ = δφ,φ′
j∗ j

,

where φ, φ′ ∈ B(ak, j). Plugging this into Equation (3.2), we get:

∑
j,k∈O(A)

∑
φ,∈B(ak,j)

tk
D

k k∗

j j∗j∗ j

a

a

φ φ∗ = .

Similarly, we have:

=
∑

j,k∈O(A)

∑
φ,φ′∈B(ak,j)

k k∗

j j∗j∗ j

φ∗

φ′

a

a

φ

φ′∗

a

k

.
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We can again examine the middle part of this diagram to see:

j∗ j

φ∗
φ′

=

j∗ j

φt

φ′

=

j∗ j

φt

φ′ .

We can now use Equation 2.20 to move the twists to the j strand. Then,
after composing with a coevaluation, we can view the last morphism as an
endomorphism of j, so it is completely determined by its trace. This trace is
δφ,φ′ , where we cancel the self-intersection with the twist. This means that this
morphism evaluates to δφ,φ′ times the evaluation on j∗j. Plugging this in yields
the desired relation.

3.3.2 Coherence

This section is devoted to proving that the morphisms from the previous section
satisfy the coherence conditions from Definition 3.1. This will establish Theorem
3.5.

Unitor coherence

Lemma 3.11. The morphisms u0 and v0 satisfy the coherence diagrams from
Definition 3.1(a), where 1 = c, 2 = s and 1 = s, 2 = c respectively.

Proof. For u0, both routes through the diagram in 3.1(a) evaluate to u0 directly,
so there is nothing to prove.

For v0, it is more convenient to compare Ic
λ−1
s−−→ Ic⊗s Is u0⊗sid−−−−→ Is⊗s Is λs−→ Is

to v0. To do this, observe that, in string diagrams, this composite computes as:

4

5 = = ,

where we have applied snapping (Lemma 2.17).

Lemma 3.12. The morphisms η, u2 make the diagrams from Definitions 3.1(b)
commute for ⊗1 = ⊗c and ⊗2 = ⊗c. Analogously, the morphisms ζ, v1 make
the diagrams from Definitions 3.1(c) commute for ⊗1 = ⊗s and ⊗2 = ⊗c.
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Proof. Consider the anti-clockwise composite in the diagram from d⊗c d′:

d⊗c d′
λ−1
s−−→Is ⊗s (d⊗c d′) u2⊗sid−−−−→ (Is ⊗c Is)⊗s (d⊗c d)

ηIs,Is,d,d′−−−−−−→ (Is ⊗s d)⊗c (Is ⊗s d′) λs⊗sλs−−−−−→ d⊗c d′.

In terms of string diagrams, replacing inclusions followed by projections by the
idempotent from Lemma 2.9 right away, this becomes:

d d′

=

d d′

=

d d′

.

Here the first step is applying snapping (Lemma 2.17) and evaluating free loops
to 1. The second equality is unwinding the loop, using that overcrossing for the
loop is the symmetry in A, hence the same as an unresolved crossing. Reading
the diagrams top to bottom yields a proof for the case of ζ and v1.

Associator coherence

Lemma 3.13. The morphisms u1 and u2 satisfy the coherence diagrams from
Definition 3.1(d) for ⊗1 = ⊗c and ⊗2 = ⊗s. Furthermore, the morphisms v1

and v2 satisfy the coherence diagrams from Definition 3.1(d) for ⊗1 = ⊗s and
⊗2 = ⊗c.

Proof. For u1 and v1, there is nothing to prove. For u2, we have to check that:

(I1 ⊗2 I1)⊗2 I1 I1 ⊗2 (I1 ⊗2 I1)

I1 ⊗2 I1 I1 I1 ⊗2 I1

α2

u2⊗2id

u1

u1

id⊗2u2
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commutes. In terms of string diagrams, this becomes:

= .

The proof for v2 proceeds similarly, remembering that the associators for ⊗s are
induced from the associators of A.

Lemma 3.14. The morphisms η, u1 make the diagrams from Definitions 3.1(c)
commute for ⊗1 = ⊗c and ⊗2 = ⊗s. Analogously, the morphisms ζ, v2 make
the diagrams from Definitions 3.1(c) commute for ⊗1 = ⊗s and ⊗2 = ⊗c.

Proof. Using u1 and v1 are the isomorphisms between Ic and Ic ⊗s Ic, we see
there is nothing to prove.

Lemma 3.15. The natural transformation η makes the diagrams from Defini-
tions 3.1(e) commute for ⊗1 = ⊗c and ⊗2 = ⊗s. Analogously, the morphisms ζ
make the diagrams from Definitions 3.1(f) commute for ⊗1 = ⊗s and ⊗2 = ⊗c.

Proof. For the first case, we compute the anti-clockwise composite from the
top-right corner to the bottom-right corner:

5
5
4
4
5
5
44

44
55
55
4 4
4 4

=

5

5

4 4

4 4

=

5
5
44

44

.

In the first step, we used the relation from Equation (2.10) to replace projection-
inclusion pairs by rings, and subsequently used slicing (Lemma 2.12) to bring
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these rings to a position where we could use:

4
=

4
,

which is an easy consequence of Equation 2.10. This left the ring in the middle
of the second diagram. To rid ourselves of this, we used the relation between
the braiding in Z(A) and the symmetry in A from Equation (2.2) to cancel it
with a projection. The third diagram is just the composite on the right hand
side of the coherence diagram 3.1(e). Reading the diagrams in this proof top
to bottom yields a proof of the commutativity of the diagram from Definition
3.1(f).

Lemma 3.16. The natural transformation η makes the diagrams from Defini-
tions 3.1(f) commute for ⊗1 = ⊗c and ⊗2 = ⊗s. Analogously, the morphisms ζ
make the diagrams from Definitions 3.1(e) commute for ⊗1 = ⊗s and ⊗2 = ⊗c.

Proof. As we are suppressing the associators for ⊗c in the string diagrams, we
see that we have, in terms of string diagrams:

5 5 5

4
5

4

=

5 5 5

4

=

5 5 5

4

=

5 5 5

4

,

for the left side composite in the diagram in Definition 3.1(f). Similar arguments
also reduce the right side of this coherence diagram to the rightmost string
diagram.

For the case involving ζ, we read the diagrams top to bottom.

This finishes proving that Z(A) can be viewed as a bilax 2-fold monoidal
category in as in Theorem 3.5.

Braiding coherence

To prove Theorem 3.5, we still need to prove that the compatibility morphisms
are compatible with the braiding.
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Lemma 3.17. The morphism v2 makes the diagram from Definition 3.3(a)
commute, where ⊗1 = ⊗s and ⊗2 = ⊗c. Analogously, the morphism u1 makes
the corresponding diagram from Definition 3.3(a) for β2 commute, where ⊗1 =
⊗c and ⊗2 = ⊗s.

Proof. As the maps involved are canonical isomorphisms coming from the uni-
tors, the diagram 3.3(a) is automatically commutative.

Lemma 3.18. The morphism u2 makes the diagram from Definition 3.3(a)
commute, where ⊗1 = ⊗c and ⊗2 = ⊗s. Analogously, the morphism v1 makes
the corresponding diagram from Definition 3.3(a) for β2 commute, where ⊗1 =
⊗s and ⊗2 = ⊗c.

Proof. We need to show that:

= .

Using the definition of the half-braiding on Is from Equation (2.16), we see that
the right hand side equals:

∑
i∈O(A)

∑
φ∈B(ii∗i,i)

ii∗

φ φ∗

ii∗ ii∗

i

, (3.3)

where we have already taken into account restrictions on the possible combina-
tions of labelling of the strands that can occur: the two leftmost strands coming
into φ need to agree with the rightmost two coming out of φ∗, and these in turn
must be labelled by a pair of dual objects. Further, as the leftmost strand going
from bottom to top is a morphism between simple objects, its incoming and
outgoing labels must be the same.
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Examining φ ∈ Hom(ii∗i, i) ∼= Hom(ii∗, ii∗), we see we can write it as:

ii∗i

φ

i

=

ii∗i

ψ

ψt

i

l ,

for some l ∈ O(A) and ψ ∈ Hom(ii∗, l). Therefore, picking a basis for Hom(ii∗, l)
for each l ∈ O(A) gives a basis for Hom(ii∗, ii∗) ∼= Hom(ii∗i, i). Rescaling if
necessary we can arrange

i

φ

i

=

i

ψ

ψt

i

l =

i

i

.

We now claim that the transposes for these φ are given by:

i

φt

ii∗i

=

i

ψ

ψt

ii∗i

l .

To see this, we compute the composite:



CHAPTER 3. Z(A) AS 2-FOLD TENSOR CATEGORY 76

φt

φ′

=

ψ

ψt

ψ′

(ψ′)t

= δψ,ψ′

ψ

ψt

= δψ,ψ′ .

Putting this together, we see that the sum in Equation (3.3) becomes:

∑
i∈O(A)

∑
l∈O(A)

∑
ψ∈B(i∗i,l)

ii∗

ψ

ψt

ii∗ ii∗

l

=
∑

i∈O(A)

ii∗

ii∗ ii∗

,

and this is what we wanted to show. For the proof of the other case, we read
the diagrams top to bottom and see that two twists cancel.

Lemma 3.19. The morphism η makes the corresponding diagram from Defi-
nition 3.3(b) for β2 commute, where ⊗1 = ⊗c and ⊗2 = ⊗s. Analogously, the
morphism ζ makes the diagram from Definition 3.3(b) commute, where ⊗1 = ⊗s
and ⊗2 = ⊗c.

Proof. For the first statement, the top route in the diagram computes as:

5

44
55
44

=

5

44

,
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where we immediately cancelled the rings coming from the projection after in-
clusion (like in the proof of Lemma 3.15). Similarly, the bottom route computes
as:

5

4
5
44

=

5

44

.

Reading the diagrams top to bottom yields a proof for the other assertion in
the lemma.

Lemma 3.20. The morphism η makes the diagram from Definition 3.3(b) com-
mute, where ⊗1 = ⊗c and ⊗2 = ⊗s. Analogously, the morphism ζ makes the
corresponding diagram from Definition 3.3(b) for β2 commute, where ⊗1 = ⊗s
and ⊗2 = ⊗c.

Proof. The top route computes as:

5

44 ,

our goal is to show that the bottom route in the diagram is the same. For this
composite we have that:

5

4
5
44

=

5

44

=

5

4

4

=

5

44

,

where in the first equality we slid the ring resulting from the projection-inclusion
pair down and the second equality uses slicing (Lemma 2.12) to bring the ring
out. For the analogous statement for ζ, we read the diagrams top to bottom.

This completes the proof of the main Theorem 3.5.



Chapter 4

Z(A)-Crossed Braided
Categories

In this Chapter we will show how to obtain Z(A)-crossed braided categories

4.1 Introduction

In the previous Chapter 3, we have shown that the Drinfeld centre Z(A) of a
symmetric fusion category A is lax 2-fold monoidal for the convolution and sym-
metric tensor products. In this Chapter, we will examine what extra structure
this 2-fold product gives to categories enriched over (Z(A),⊗s). In particular,
we will define, for such categories, a notion of monoidal structure that factors,
on morphisms, through the convolution tensor product. We will refer to this as
a Z(A)-crossed monoidal structure (Definition 4.16). Additionally, we spell out
what it means for such a monoidal structure to be braided (Definition 4.20).

We are, in part, motivated by the desire to, in Chapter 5, take a braided
fusion category containing A and produce from this a braided object enriched
over A. It turns out that Z(A)-crossed braided is the right notion to consider.
On the other hand, in his book on Homotopy Quantum Field Theory [Tur10,
Chapter VI], Turaev defined the notion of G-crossed braided fusion category
(see Definition 4.29 here). We will show that, for A Tannakian, a Z(A)-crossed
braided category gives rise to such a G-crossed braided category. Furthermore,
for A super-Tannakian, we define the notion of a super G-crossed braided cat-
egory for a super-group (G,ω) (Definition 4.31), and show that, similarly, a
Z(A)-crossed braided category gives rise to a super G-crossed braided category.
These two results constitute Proposition 4.36. We show that this construction
has an inverse, this is the main Theorem 4.27 of this Chapter.

The structure of this Chapter is as follows. We will first, in Section 4.2, de-
velop the theory of Z(A)-crossed braided categories. In Section 4.3, is devoted
to stating the definition of a (super) G-crossed braided category, and prov-

78
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ing Theorem 4.36, which tells us Z(A)-crossed braided categories give rise to
(super)-G-crossed braided categories. After this, in Section 4.3.3, we construct
an inverse to this construction, and prove in Section 4.3.4 our main Theorem
4.27.

4.2 Z(A)-crossed braided categories

We now set up the theory of Z(A)-crossed braided categories.

Notation 4.1. We will write Z(A)s for the Drinfeld centre of a symmetric
ribbon fusion category A equipped with the symmetric tensor product from
Theorem 2.22.

4.2.1 Z(A)s-enriched categories

As Z(A) is abelian, categories enriched and tensored over Z(A)s admit a notion
of semi-simplicity. We will will assume that all our Z(A)s-enriched and tensored
categories are semi-simple with finitely many simples.

Definition 4.2. Let K be a Z(A)s-enriched category. Then the associated A-
enriched category K for K is the category obtained by applying the forgetful
functor Z(A)s → A.

Lemma 4.3. K is indeed an A-enriched category.

Proof. By Proposition 2.23, the forgetful functor is lax monoidal, so this is a
direct consequence of Proposition A.23.

The assignment K 7→ K interacts in the following way with the enriched
Cartesian product:

Lemma 4.4. For K and L be Z(A)s-enriched categories, we have that the map

H : K�
s
L → K�

A
L,

which acts the identity on objects and as the image under the forgetful functor
of η (see Equation (3.1)) on hom-objects, is an A-enriched functor. It has a
left-sided inverse:

Z : K�
A
L → K�

s
L,

which is also the identity on objects, and acts as ζ (Equation (3.1)) on hom-
objects.

Proof. Observing that the image of η under the forgetful functor gives the lax
monoidality morphism for the forgetful functor, the first part is a direct conse-
quence of Proposition A.26. That Z is a left-sided inverse follows from ζη = id
and Proposition A.24.
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A-tensoring

We will need the following fact about the interaction between the other tensor
product ⊗c on Z(A) and the Z(A)s-enriched and tensored structure.

Proposition 4.5. Let K be an Z(A)s-enriched and tensored category, and de-
note its Z(A)s-tensoring by ·. Furthermore, we have for a ∈ A ⊂ Z(A):

a⊗c K(−, k)
∼=⇒K(−, (a⊗c Is) · k). (4.1)

Proof. By Lemma 2.27, for z ∈ Z(A) and a ∈ A, we have:

a⊗c z ∼= (a⊗c Is)⊗s z.

By Lemma A.13, this means that we have for all k, k′ ∈ K:

a⊗c K(k, k′) ∼= K(k, (a⊗c Is) · k′).

Definition 4.6. The 2-category Z(A)LinCat of Z(A)s-enriched and tensored
and A-tensored categories has morphisms Z(A)-enriched functors F : K → K′
which respect the Z(A)-tensoring, and 2-morphisms Z(A)-enriched natural
tranformations η satisfying ηak = idaηk.

This 2-category admits a 2-functor:

(−) : Z(A)LinCat→ ALinCat,

where ALinCat was defined in Definition A.6.

As this is a 2-category of categories enriched over a symmetric category, it
comes equipped with a symmetric monoidal structure, see Definition A.17.

Definition 4.7. We will denote by �
s

the Cauchy completion of the enriched

Cartesian product of Z(A)s-enriched and tensored categories. (The notion of
Cauchy completion is defined in Definition A.15.)

4.2.2 Crossed Product of Z(A)s-Enriched Categories

Definition 4.8. Let K,L be categories enriched over Z(A)s. Then the convo-
lution product K�

c
L of K and L is the Cauchy completion of the (Z(A),⊗

s
)-

enriched category with objects symbols k � l for k ∈ K and l ∈ L, and hom-
objects

K�
c
L(k � l, k′ � l′) := K(k, k′)⊗

c
L(l, l′).

The composition is defined by the composite of the projection η from Equation
(3.1) and the compositions in K and L. The identity morphisms are given by
the composite

Ik�l : Is
u2−→ Is⊗

c
Is

Ik ⊗
c

Il

−−−−→ K(k, k)⊗
c
L(l, l), (4.2)
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where Ik and Il correspond to the identity morphisms on k and l, respectively.
The morphism u2 is as in Lemma 3.10.

This is equivalenty the Cauchy completion of the category obtained by change
of basis along the functor ⊗c : Z(A)s � Z(A)s → Z(A)s for the Deligne tensor
product K � L, and hence it is Z(A)s-enriched by Proposition A.23. Similarly
to the situation for linear categories, the Cauchy completion ensures that the
resulting category is semi-simple with finitely many simples. We will provide
a separate proof for convenience of the reader. Also, it contains an awesome
diagram.

Lemma 4.9. The composition in K�
c
L is associative, and the identity mor-

phisms are given by Equation (4.2).

Proof. For readability of this proof, we will use the shorthand Kij := K(ki, kj)
with i, j = 0, 1, 2, 3, and the obvious version of this for L. We will further
suppress ⊗s from the notation for this proof and write · for ⊗

c
.

For associativity, we should check that the outside of the following diagram
commutes:

((K23 · L23)(K12 · L12))(K01 · L01) (K23 · L23)((K12 · L12)(K01 · L01))

((K23K12) · (L23L12))(K01 · L01) ((K23K12)K01) · ((L23L12)L01) (K23 · L23)((K12K01) · (L12L01))

(K13 · L13)(K01 · L01) (K23(K12K01)) · (L23(L12L01)) (K23(K12K01)) · (L23(L12L01))

(K13K01) · (L13L01) K03 · L03 (K23(K12K01)) · (L23(L12L01)).

α

η η

◦

η

α

◦
◦

η

η ◦ η

◦
◦

The top right face of this diagram is part (e) from Definition 3.1, so commutes
by Theorem 3.5. The left and right faces in middle commute by naturality of η,
whereas the bottom left face commutes by associativity of ◦ in K and L. This
establishes that the composition in K�

c
L is associative in the appropriate sense.

To establish the morphisms from (4.2) indeed define the identity morphisms,
we need to check that the composite

K�
c
L(k0 � l0, k1 � l1)

ρs−→ K�
c
L(k0 � l0, k1 � l1)Is

Ik0�l0−−−−→

K�
c
L(k0 � l0, k1 � l1)K�

c
L(k0 � l0, k0 � l0)

◦−→ K�
c
L(k0 � l0, k1 � l1)

is the identity. Unpacking the definitions of the maps involved, we see that we
need to check that the outside of the following diagram commutes:
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K01 · L01 (K01K00) · (L01L00)

(K01Is) · (L01Is)

(K01 · L01)Is (K01 · L01)(Is · Is) (K01 · L01)(K00 · L00).

ρ−1
s

ρ−1
s ·ρ−1

s

◦

Ik0�l0

u2
Ik0 ·Ik0

η

η

The right face of this commutes by naturality of η, the top face because ◦ and
I are compatible in K and L. The left face is (d) from Definition 3.1.

We remind the reader that the forgetful functor Z(A)→ A takes ⊗c to ⊗A.

Lemma 4.10. If K and L are Z(A)s-enriched and tensored, then K�
c
L =

K�
A
L.

Proof. To prove the claim, observe that the following diagram commutes:

Z(A) � Z(A) Z(A)

A A,

⊗c

Forget�Forget Forget

⊗A

because Forget is a strictly monoidal functor with respect to ⊗c. This means
K�

c
L and K�

A
L are the result of a change of basis along equal functors, and

hence the same category.

We also have:

Corollary 4.11. If K and L are Z(A)s-enriched and tensored, then K�
c
L is

Z(A)s-tensored, with tensoring

a(k � l) := (ak � l) ∼= (k � al).

Proof. This follows from Proposition A.18.

As long as we restrict our attention to categories that are Z(A)s-tensored,
the unit for the convolution product is A enriched over A ⊂ Z(A)s, denoted by
AZ . If we drop the tensoring, the unit would become the one object category
with endomorphism object for this single object Ic ∈ Z(A). This category is
not Z(A)s-tensored, and taking the free Z(A)-enriched and Z(A)s-tensored
category on this gives AZ .

Lemma 4.12. The convolution product of AZ with any Z(A)s-enriched and
tensored category K is equivalent to K.
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Proof. From Proposition 4.5, we get a functor

AZ �
c
K → K

a� k 7→ (a⊗c Is) · k,

which on morphisms is the composite (using Equation 4.1, Lemmas 2.27, A.13
and A.9, and the adjunction for duals in A)

AZ(a, a′)⊗c K(k, k′) ∼= a∗ ⊗c AZ(IA, a′)⊗c K(k, k′)
∼= K(k, (a∗ ⊗c a′ ⊗c Is) · k′)
∼= K(k, (a∗ ⊗c Is) · (a′ ⊗c Is) · k′)
∼= K((a⊗c Is) · k, (a′ ⊗c Is) · k′).

This is fully faithful (induces isomorphisms on hom-objects) by construction,
and seen to be essentially surjective by taking a = Ic, hence an equivalence.

Definition 4.13. Let K,L be categories enriched over Z(A)s. Then the braid-
ing functor

B : K�
c
L → L�

c
K

is given by k�l 7→ l�k on objects and by the braiding in Z(A) on Hom-objects.

Lemma 4.14. B indeed defines a Z(A)s-enriched functor. Furthermore, this
functor is an equivalence.

Proof. Viewing K�
c
L as coming from a change of basis (Proposition A.24) on

K�L along ⊗c from Z(A)s�Z(A)s to Z(A)s, we notice we can get L�
c
K from a

change of basis on K�L along ⊗c precomposed with the LinCat-switch functor
in Z(A)s�Z(A)s → Z(A)s�Z(A)s. By definition, the braiding in Z(A)c gives
a natural isomorphism between these two functors. Hence, by Proposition A.30,
if the braiding is lax monoidal with respect to ⊗s, the braiding will induce
the functor B, and this will be an equivalence. But the lax monoidality of
the braiding is exactly what Definition 3.3 entails, so by Theorem 3.5 we are
done.

The lax and oplax compatibility morphisms for the 2-fold monoidal structure
(Equation 3.1) on Z(A) give functors relating the convolution product and the
enriched cartesian product of Z(A)s-enriched categories.

Proposition 4.15. The assignments

Z : (K�
s
L)�

c
(K′�

s
L′)↔ (K�

c
K′)�

s
(L�

c
L′) : H

k � l � k′ � l′ ↔ k � k′ � l � l′

(K01L01) · (K′01L′01)
ζ←→
η

(K01 · K′01)(L01 · L′01),

where we have used the notation from the proof of Lemma 4.9, are Z(A)s-
enriched functors.
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Proof. Composition in the category on the left hand side is given by:

((K12L12) · (K′12L′12))((K01L01) · (K′01L′01))
η−→ (K12L12K01L01) · (K′12L′12K′01L′01)

s·s−−→(K12K01L12L01) · (K′12K′01L′12L′01)
(◦◦)·(◦◦)−−−−−→ (K02L02) · (K′02L′02).

On the right hand side, it is the composite:

(K12 · K′12)(L12 · L′12)(K01 · K′01)(L01 · L′01)
s−→(K12 · K′12)(K01 · K′01)(L12 · L′12)(L01 · L′01)
ηη−→((K12K01) · (K′12K′01))((L12L01) · (L′12L′01))

(◦·◦)(◦·◦)−−−−−−→(K02 · K′02)(L02 · L′02).

Now, η ⊗s η gives a morphism from the first term in the second chain to the
first term in the first chain, while η gives a morphism between the last terms.
Functoriality of H is equivalent to the diagram formed in this way commuting.
Comparing the penultimate terms in the sequences, we see that η gives a map
between these, and the square this forms with the composition morphisms and
the final η commutes by naturality of η. We are therefore left with showing that
that the rectangle formed by the first three terms in the sequences commutes.
Schematically, this is the equation:

η ◦ (ηη) ◦ (idsid) = (ss) ◦ η ◦ (ηη).

We would like to use the fact that η satisfies the condition from Definition 3.3,
but for this we are using the symmetry on exactly the wrong factors. However,
because η respects the associators, we can replace

η ◦ (ηη) = η ◦ (idη) ◦ (idηid),

to see

η ◦ (ηη) ◦ s = η ◦ (idη) ◦ (idηid) ◦ (idsid) = η ◦ (idη) ◦ (idssid) ◦ (idηid)

= (ss) ◦ η ◦ (ηη),

where the second equality is the compatibility of η with the symmetry, and the
final equality is the naturality of η. Similarly, ζ is compatible with the symmetry
and the associators, and so Z is a functor.

Because η ◦ ζ = id, the functor Z is in fact a right sided inverse to H.

4.2.3 Z(A)-crossed categories

We can now define the notions of Z(A)-crossed tensor and braided categories.
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Z(A)-crossed monoidal categories

Definition 4.16. Let K be a Z(A)s-enriched and tensored category. A Z(A)-
crossed tensor structure on K is a functor:

⊗ : K�
c
K → K,

together with a functor
I : AZ → K,

and associators and unitors that satisfy the usual coherence conditions. If K is
rigid and I(IA) is a simple object of K, we will call it Z(A)-crossed fusion.

Proposition 4.17. Let K and L be Z(A)-crossed tensor categories. Then K�
s
L

is Z(A)-crossed tensor, with monoidal structure given by the componentwise
tensor product.

Proof. The componentwise tensor product is given by the composite of Z from
Proposition 4.15 with the image under the change of basis along ⊗s of the
Z(A)s � Z(A)s-enriched functor

K�
c
K � L�

c
L → K � L.

As these are Z(A)-enriched functors, so is the componentwise tensor product.
To establish associativity and unitality, we observe that Z is compatible with
the associators and unitors for Z(A) and hence will preserve the componentwise
associators.

Lemma 4.18. Let K and L be Z(A)-crossed tensor categories. Then the switch
map S : K�

s
L → L�

s
K, that uses the symmetry in Z(A)s on hom-objects is a

monoidal functor, in the sense that

K�
s
L�

c
K�

s
L K�

s
L

(L�
s
K)�

c
(L�

s
K) L�

s
K

⊗

S�
c
S S

⊗

commutes up to natural isomorphism.

Proof. We will show that in this case the diagram strictly commutes. Unpacking
the definition of the Z(A)-crossed monoidal structure on K�

s
L, we get

K�
s
L�

c
K�

s
L K�

c
K�

s
L�

c
L K�

s
L

(L�
s
K)�

c
(L�

s
K) L�

c
L�
s
K�

c
K L�

s
K.

Z

S�
c
S

⊗K�
s
⊗L

S S

Z
⊗K�

s
⊗L
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The leftmost square commutes as a direct consequence of ζ being compatible
with the symmetry, as it satisfies Definition 3.3. The rightmost square commutes
as the top route is change of basis along ⊗s for ⊗K � ⊗L composed with the
switch functor, whereas the bottom is change of basis along ⊗s composed with
the switch map on the same functor, and the symmetry is a natural isomorphism
between these change of basis functors.

Similarly to Proposition A.27, we have:

Lemma 4.19. Let K be Z(A)-crossed tensor, then K is A-tensor.

Proof. We have already established that K�
c
K = K�

A
K in Lemma 4.10, this

means that the image under change of basis along the forgetful functor of the
Z(A)-crossed monoidal structure is a functor K�

A
K → K. Furthermore, AZ =

A, the category A enriched over itself, so the image of the unit for K is a
functor A → K, as required. By the 2-functoriality of the change of basis along
the forgetful functor, the images of the unitor and associator will act as unitors
and associators for K.

Z(A)-crossed braided categories

Definition 4.20. Let K be Z(A)-crossed tensor. Then a crossed braiding for
K is a natural isomorphism between ⊗ : K�

c
K → K and

⊗ : K�
c
K B−→ K�

c
K ⊗−→ K,

that satisfies the hexagon equations.

Proposition 4.21. Let K and L be Z(A)-crossed braided categories. Then
K�

s
L is Z(A)-crossed braided.

Proof. We will show that the componentwise braiding is compatible with the
componentwise Z(A)-crossed monoidal structure. That is,

K�
s
L�

c
K�

s
L K�

c
K�

s
L�

c
L K�

s
L

K�
s
L�

c
K�

s
L K�

c
K�

s
L�

c
L K�

s
L

B

Z
⊗K�

s
⊗L

B�
s
B =

Z
⊗K�

s
⊗L

commutes up to componentwise braiding. The leftmost square commutes as a
consequence of ζ satisfying 3.3, the rightmost square commutes up to the �

s

product of the braidings for K and L.

Lemma 4.22. The switch functor S from Lemma 4.18 is braided monoidal.

Proof. We have to check that S takes the componentwise braiding to the com-
ponentwise braiding. This is immediate from the symmetry and the braiding
commuting with each other in Z(A).
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The Neutral Subcategory

In a Z(A)-crossed braided category K, the full subcategory KA of objects for
which the hom-objects are contained in the subcategory A ⊂ Z(A) forms an
braided A-tensor category: the functor B restricts to the switch functor for the
A-product here, and by Proposition 2.26 the symmetric tensor product is the
tensor product of A on this subcategory. We can define KA by:

Definition 4.23. Let K be a Z(A)-crossed braided category. Then the full
subcategory on objects k ∈ K for which the Yoneda embedding factors as:

K(−, k) : Kop → A ↪→ Z(A),

is called the neutral subcategory of K and will be denoted by KA.

There is another characterisation of the neutral subcategory:

Lemma 4.24. Let k be an object of a Z(A)s-enriched category K. This object
is in KA if and only if the endomorphism object K(k, k) of k is an object of
A ⊂ Z(A).

Proof. The “only if” direction is obvious. For the other direction, observe that
for any k′ ∈ K, we have an automorphism of K(k′, k) given by the composite

K(k′, k) ∼= Is ⊗s K(k′, k)
idk−−→ K(k, k)⊗s K(k′, k)

◦−→ K(k′, k).

Assuming that K(k, k) ∈ A ⊂ Z(A), we see, by Proposition 2.26, that this
automorphism factors through an object of A, and hence that K(k′, k) is an
object of A.

By Proposition 2.26, the subcategory A ⊂ Z(A) is “orthogonal” to its com-
plement. This translates to the following for the product �

s
of Z(A)s-enriched

and tensored categories from Definition 4.7:

Proposition 4.25. Let K and L be Z(A)s-enriched and tensored categories.
Then:

(K�
s
L)A ∼= K�

s
LA ∼= KA�

s
L ∼= KA�

A
LA,

where we view the A-enriched and tensored category on the right as Z(A)s-
enriched and tensored category by using the symmetric strictly monoidal inclu-
sion functor A ↪→ Z(A).

Proof. We prove the equivalence between the left- and rightmost categories first.
The category on the left hand side is a full subcategory of K�

s
L, we define a

functor KA�
A
LA → K�

s
L by using the inclusion A ↪→ Z(A) on hom-objects

and claim its essential image is (K�
s
L)A.
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To show this functor is essentially surjective onto (K�
s
L)A, let k � l be an

object of (K�
s
L)A. For this k and l, denote the summands contained in KA

and LA by kA and lA, respectively. We claim that:

kA � lA ∼= k � l.

We will show this by examining their Yoneda embeddings. The object on the
left hand side has Yoneda embedding K(−, kA) ⊗s L(−, lA) whereas the right
hand side has K(−, k)⊗s L(−, l), and we claim that the image of the inclusions
ik : kA ↪→ k and il : lA ↪→ l is a natural isomorphism between these functors.
Let k′ � l′ be an object of K�

s
L, then we want to show that

K(k′, kA)⊗s L(l′, lA)
(ik)∗⊗s(il)∗−−−−−−−−→ K(k′, k)⊗s L(l′, l)

is an isomorphism. By Proposition 2.26, the symmetric tensor product of two
objects in Z(A) is a non-zero object of A if and only if the A-summands of these
objects are non-zero, and the part that lies in A is the product of these sum-
mands. The objects K(k′, kA) and L(l′, lA) are the A summands of K(k′, kA)
and L(l′, lA) respectively, so the claim follows. The same argument also estab-
lishes the functor is fully faithful.

To see the other equivalences, note that the argument above also works if we
only take the neutral summand of k or l.

A 2-category of Z(A)-crossed braided categories

For future reference, it will be useful to define the following:

Definition 4.26. The symmetric monoidal 2-category Z(A)-XBF of Z(A)-
crossed braided fusion categories is the 2-category with

• objects Z(A)-crossed braided fusion categories,

• morphisms braided monoidal Z(A)s-enriched functors F : C → C′, to-
gether with a natural transformation µ with components for a ∈ Z(A)
and c ∈ C

F (ac)
µa,c−−−→∼= aF (c),

such that for all a ∈ Z(A) and c, c′ ∈ C, the following diagram commutes:

C(c, ac′) aC(c, c′)

C′(F (c), F (ac′)) C′(F (c), aF (c′)) aC(F (c), F (c′)),

∼=

F ida⊗F
µ

∼=

• and 2-morphisms monoidal natural transformations, that make the dia-
grams
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F (ac) G(ac)

a · F (c) a ·G(c),

ηac

∼= ∼=
ida·ηc

commute.

4.3 (Super)-Tannakian case

This part of this Chapter is devoted to proving:

Theorem 4.27. Let G (or (G,ω)) be a finite (super) group. Then the func-

tor (−) (see Definition 4.38 and Section 4.3.2) from Z(A)-XBF (Definition
4.26) to G-XBF (or (G,ω)-XBF) (Definition 4.34) is a symmetric monoidal
equivalence, with inverse given by Fix (see Definitions 4.52, 4.56 and 4.57).

We will start by introducing the relevant notions in Section 4.3.1, in Section

4.3.2 we show how define the functor (−) and give an item by item proof that
it lands in G-crossed braided categories. This the content of Theorem 4.36.
In Section 4.3.3 we show to define Fix to produce from a G-crossed braided
category a Z(A)-crossed tensor category.

4.3.1 Preliminaries

Notation 4.28. Throughout the remainder of this chapter, we will fix a choice
Φ of fibre functor on our symmetric fusion category A.

The Drinfeld Centre as G-equivariant vector bundles

With Theorem A.35 in hand, we can view A as representations of some finite
(super)-group. The Drinfeld centre of the category of representations of a finite
group G is well-known [BK01, Chapter 3.2] to be (braided monoidal) equivalent
to the category of vector bundles over G, equivariant for the conjugation action
of G on itself. This result extends to the super-group case, see Section A.2.3.
Additionally, it was shown in Chapter 2 that the symmetric tensor product
on the Drinfeld centre agrees with the (graded) fibrewise tensor product. We
will make use of the following facts. In this model for the Drinfeld centre, the
forgetful functor Z(A)→ A is given by summing over the fibres. Applying the
fibre functor Φ to this produces a vector space, which carries a G-grading by
remembering over which elements the fibres sat. Additionally, this vector space
carries a G-action which conjugates the grading.

G-crossed braided categories

Definition 4.29 ([Tur10]). A G-crossed braided fusion category is a Vect-
enriched and tensored category C, together with:
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(i) for each g ∈ G a Vect-enriched and tensored semi-simple category Cg with
finitely many simples, decomposing C as C = ⊕g∈GCg (a G-graded linear
category);

(ii) a G-graded fusion structure: a tensor structure ⊗ : C � C → C, such that
⊗ : Cg � Ch → Cgh, that is rigid with a simple unit;

(iii) a homomorphism G → (Aut(C)). The image of g ∈ G under this homo-
morphism will be denoted (−)g. We require (−)g : Ch → Cghg−1 . (This is
called a G-crossing.)

(iv) a crossed braiding : for each g ∈ G a natural isomorphism between ⊗ : Cg�
C → C and

Cg � C S−→ C � Cg
(−)g�Id−−−−−→ C � Cg ⊗−→ C,

satisfying the hexagon equations.

Super G-crossed braided categories

We will now introduce the notion of G-crossed braided category, which the
author believes to be new. Before we give the definition, we need to following.

Definition 4.30. Let C be a sVect-enriched category. Then the grading in-
volution functor Π on C is the autofunctor on C that acts as the identity on
objects and even morphisms, and as −id on odd morphisms.

Definition 4.31. A super G-crossed braided category is an sVect-enriched and
tensored category C, together with:

(i) for each g ∈ G an sVect-enriched and tensored category Cg that is semi-
simple with finitely many simples, decomposing C as C = ⊕g∈GCg (a G-
graded super linear category);

(ii) a G-graded super fusion stucture: a super tensor structure ⊗ : C �
sVect

C →
C, such that ⊗ : Cg �

sVect
Ch → Cgh that is rigid and has a simple unit object;

(iii) a homomorphism (G,ω) → (Aut(C),Π) of pointed groups, where Π de-
notes the grading involution functor. The image of g ∈ G under this
homomorphism will be denoted (−)g. We require (−)g : Ch → Cghg−1 .
(This is called a super G-crossing.)

(iv) a crossed braiding, for each g ∈ G a natural isomorphism between⊗ : Cg �
sVect

C →
C and

Cg �
sVect

C S−→ C �
sVect

Cg
(−)g�Id−−−−−→ C �

sVect
Cg ⊗−→ C,

satisfying the hexagon equations.
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The degreewise product of (super) G-crossed braided categories

Definition 4.32. Let C and D be G-graded (super) linear categories, then the
degreewise product of C and D is defined by:

C�
G
D =

⊕
g∈G
Cg �Dg,

where in the super case we use �
sVect

instead of �. Both these operations are a

special case of Definition A.17.

Proposition 4.33. The degreewise product C�
G
D, of G-crossed braided cate-

gories C and D, is G-crossed braided, for the componentwise tensor product,
G-crossing and crossed braiding.

Proof. The category C�
G
D is G-graded by construction. The componentwise

tensor product is given by:

Cg �Dg � Ch �Dh Id�S�Id−−−−−−→ Cg �Dg � Ch �Dh ⊗�⊗−−−→ Cgh �Dgh,

where we use �
sVect

and its switch map instead of � in the super case. This

clearly respects the G-grading.
Any pair of automorphisms of C and D that conjugate the grading will induce

an automorphism of C�
G
D that conjugates the grading. In the super case, we

observe that the sVect-product of the Z2-grading involution on sVect-enriched
categories is the grading involution on the product, so the G-crossings of C and
D will give an homomorphism of pointed groups as desired by (iii) in Definition
4.31.

To see that the componentwise braiding gives a crossed braiding, observe that
we need for g ∈ G a natural isomorphism between the componentwise tensor
product and

(C�
G
D)g�(C�

G
D)

S−→ (C�
G
D)�(C�

G
D)g

(−)g⊗Id−−−−−→ (C�
G
D)�(C�

G
D)g

⊗−→ (C�
G
D),

where in the super case we replace � with �
sVect

. That is, for each h ∈ G, the

following diagram should commute up to the braiding:

Cg �Dg � Ch �Dh Ch �Dh � Cg �Dg

Cg � Ch �Dg �Dh Cghg−1 �Dghg−1 � Cg �Dg

Cgh �Dgh Cghg−1 � Cg �Dghg−1 �Dg.

S

Id�S�Id (−)g�(−)g�Id�Id

⊗�⊗ Id�S�Id

⊗�⊗

Using that the switch map is natural, we can exchange the maps along the right
hand side to get:
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Cg �Dg � Ch �Dh Ch �Dh � Cg �Dg

Cg � Ch �Dg �Dh Ch � Cg �Dh �Dg

Cgh �Dgh Cghg−1 �Dghg−1 � Cg �Dg.

S

Id�S�Id Id�S�Id

⊗�⊗

S�S

(−)g�(−)g�Id�Id

⊗�⊗

The top square commutes strictly, and the bottom square indeed commutes up
to the product of the braidings.

A 2-category of (super) G-crossed braided fusion categories

The (super) G-crossed categories fit into a symmetric monoidal 2-category:

Definition 4.34. Let G (or (G,ω)) be a (super) group. Then the symmet-
ric monoidal 2-category G-XBF (or (G,ω)-XBF) has objects G- (or (G,ω)-
)crossed braided fusion categories. The 1-morphisms are (super) linear braided
monoidal functors F : C → C′, satisfying F (Cg) ⊂ Cg and F ◦ (−)g = (F (−))g

for all g ∈ G. The 2-morphisms are monoidal natural transformations κ satisfy-
ing (κc)

g = κcg . The symmetric monoidal structure is given by the degreewise
tensor product, with switch map given by the degreewise switch map of (super)-
linear categories.

Remark 4.35. The definitions of (super) G-crossed braided category and func-
tors between them used here are strict. One can also consider G-actions that are
2-functors from the 2-category with one object and no non-trivial 2-morphisms
G to the 2-category with one object Aut(C), and allow functors to preserve the
G-action up to natural isomorphism.

4.3.2 From Z(A)-crossed to (super) G-crossed

In this section we will explain how to produce from a Z(A)-crossed braided
fusion category a (super) G-crossed braided fusion category:

Proposition 4.36. Let A = Rep(G) (or Rep(G,ω)). For any K be a Z(A)-

crossed braided fusion category, the (super) linear category K obtained from K
(see Definition 4.38) is (super) G-crossed braided fusion (see Definitions 4.29
and 4.31).

After this, in Section 4.3.2, we will show how to extend this to a 2-functor
from Z(A)-XBF to G-XBF (or (G,ω)-XBF).

The induced map for the fibre functor

Given a Z(A)s-enriched category K, we can produce a (super) linear category
out of K (Definition 4.2) by changing basis along the fibre functor Φ for A.
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Lemma 4.37. Let K be a Z(A)s-enriched and tensored category. Then ΦK is
a (super)-linear category.

Proof. As the fibre functor is monoidal, this is a direct consequence of Proposi-
tion A.31.

The resulting category will usually not be idempotent complete, even when
the original category was. We set:

Definition 4.38. Let K be a Z(A)s-enriched and tensored category. Then the

(super) linearisation K of K is the idempotent completion of ΦK.

We observe that, as the fibre functor is unique up to monoidal natural iso-

morphism [Del90, Del02], the category K is unique up to equivalence.

G-grading

Since, on VectG[G], the forgetful functor followed by the fibre functor takes
objects to G-graded (super) vector spaces, the morphisms of ΦK are G-graded
(super) vector spaces. This will induce a grading on the idempotents:

Lemma 4.39. For every Z(A)s-enriched and tensored category K, every min-
imal idempotent of ΦK is homogeneous for the G-grading on the hom-objects.

Proof. Let k be an object of ΦK. Composition of endomorphisms of k factors
through the image of the symmetric tensor product of K(k, k) with itself. This
image is the fibrewise (super) tensor product (Definitions 2.29 and 2.33, Theo-
rem 2.35). Observe that an idempotent is necessarily even. In the super-case,
the fibrewise super tensor product reduces to the fibrewise tensor product for
even objects. Decomposing an even endomorphism ψ into homogeneous com-
ponents ψg, the condition for ψ to be an idempotent becomes:

ψ ◦ ψ =
∑
g∈G

ψg ◦ ψg =
∑
g∈G

ψg = ψ,

which is a condition for each ψg separately. So ψ is idempotent if and only if
all its homogeneous components are. In particular, any minimal idempotent is
homogeneous.

This means that there is a function from the simple objects of the category

K to G. We would like to extend this to a direct sum decomposition of our
category, so we need to establish:

Lemma 4.40. Let k and k′ be simple objects of K of degrees g and g′, respec-

tively. Then K(k, k′) is zero unless g = g′.
Furthermore, assume that k = fk ∈ ΦK(k̄, k̄) and k′ = f ′k ∈ ΦK(k̄′, k̄′) for

objects k̄, k̄′ ∈ ΦK and idempotents fk, f
′
k. Then, denoting by ΦK(k̄, k̄′)g,p taking

the even (p = 0) or odd (p = 1) part of the summand ΦK(k̄, k̄′)g, any morphism
of parity p between k and k′ arises from composing a morphism in ΦK(k̄, k̄′)ωpg,p
with the idempotents.
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Proof. In an idempotent completion, the hom-object between two objects is
computed by pre- and post-composing with the idempotents. Composition fac-
tors over the fibrewise (super) tensor product, so morphisms between k and k′

are in the image of the composition map out of:

ΦK(k̄′, k̄′)g
′

0 ⊗ωf ΦK(k̄, k̄′)⊗ωf ΦK(k̄, k̄′)g0,

where ⊗ωf = ⊗f in the non-super case, and ΦK(k̄′, k̄′)g
′

0 denotes the bundle

supported by {g′} with fibre ΦK(k̄′, k̄′)g′,0. We have used similar notation for
the rightmost factor. Computing the rightmost product, we see this is the
bundle with fibres:

(ΦK(k̄, k̄′)⊗ωf ΦK(k̄, k̄′)g0)h,p = ΦK(k̄, k̄′)h,p ⊗ (ΦK(k̄, k̄′)g0)ωph.

For this to be non-zero, we need h = ωpg, proving the “furthermore” part of the
Lemma. Taking the fibrewise (super) tensor product of this with ΦK(k̄′, k̄′)g

′
,

we get:

(ΦK(k̄′, k̄′)g
′

0 ⊗ωf ΦK(k̄, k̄′)⊗ωf ΦK(k̄, k̄′)g0)h′,p′ =

(ΦK(k̄′, k̄′)g
′

0 )ωp′h′ ⊗ (ΦK(k̄, k̄′)⊗ωf ΦK(k̄, k̄′)g0)h′,p′ .

We immediately see that for this to be non-zero requires ωp
′
h′ = g′, and from

the above computation ωp
′
h′ = g, so we need g = g′ for this to be non-zero.

Combining this with Lemma 4.39, we get:

Corollary 4.41. The (super)-linear category K decomposes a direct sum

K =
⊕
g∈G
Kg

of (super)-linear categories.

We remind the reader that this corresponds to items (i) from Definition 4.29
and (i) from Definition 4.31.

Graded monoidal structure

Lemma 4.42. K is (super)-fusion.

Proof. This is a direct consequence of Proposition A.27 and Lemma 4.19.

This (super-)tensor structure is graded in the sense that it satisfies item (ii)
from Definition 4.29 (or item (ii) from Definition 4.31):

Lemma 4.43. The (super)-tensor structure from Lemma 4.42 maps

Kg �Kh → Kgh,
with respect to the decomposition from Corollary 4.41, and where we replace �
with �

sVect
in the super case.
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Proof. The grading of the (super-)tensor product of two homogeneous objects

k ∈ Kg and k′ ∈ Kh obtained by taking the tensor product of the idempotents in
ΦK. This tensor product, in turn, factors over the convolution tensor product
of G-graded (super) vector spaces, and this sends the g-graded and the h-graded
part to the gh-graded part, so the (super-)tensor product of the idempotents
will be homogeneous of degree gh.

G-action

The G-graded vector spaces obtained by applying the forgetful and fibre functors
to the objects of Z(A) carry an action of the (super)-group, that we will denote
by g·. This G-action conjugates the grading. This action of the (super-)group
translates to an action on the idempotent completion:

Lemma 4.44. Let g ∈ G, then the assignment

(−)g : K → K
k 7→ g · k
K(k, k′)→ g · K(g · k, g · k′)

defines an autofunctor of K.

Proof. This assignment is clearly strictly invertible, with inverse given by (−)g
−1

,
so we have to prove that it defines a functor. It is enough to show that the as-
signment

(−)g : ΦK → ΦK
k 7→ k

ΦK(k, k′)→ g · ΦK(k, k′)

is a functor, this will descend to the idempotent completion K as prescribed. As
the identity morphisms are given by equivariant maps from Is = C × G to the
hom-objects, (−)g preserves identities. Recall that composition maps out of the
fibrewise tensor product, and is a morphism in Z(A). Any morphism in Z(A)
is a morphisms intertwining the G-action on the vector bundles over G, so we
are trying to show that the fibrewise tensor product has the property that

g · (V ⊗f W ) = (g · V )⊗f (g ·W ),

but this true by definition, see Definition 2.29.

Lemma 4.45. The assignment g 7→ (−)g defines a homomorphism G→ Aut(K),

or (G,ω)→ (Aut(K),Π) in the super case.

Proof. In the non-super case, there is nothing to prove. In the super-case we
observe that the Z2-grading on the G-equivariant vector bundles over G is ex-
actly determined by whether ω acts by 1 or −1. So, (−)ω will act by −1 exactly
on the odd morphisms, i.e. as Π (Definition 4.30).
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We observe that this action of g ∈ G on K takes Kh to Kghg−1 . This means
that this action satisfies item (iii) from Definition 4.29 (or from Definition 4.31
in the super case).

G-crossed braiding

To prove Theorem 4.36, we still need to show that K satisfies (iv) from Definition
4.29 (or (iv) from Definition 4.31). The first step for this is:

Lemma 4.46. The image of the functor B (see Definition 4.13) under the
change of basis along the forgetful functor followed by Φ and then idempotent
completion is given by:

Kg �K Switch−−−−→ K �Kg
(−)g�Id−−−−−→ K �Kg, (4.3)

where in the super case, we use �
sVect

instead of �, and the switch map uses the

symmetry in super vector spaces.

Proof. The image of the functor B (see Definition 4.13) under the change of
basis along the forgetful functor followed by Φ is given by

ΦB : ΦK � ΦK → ΦK � ΦK

k � k′ 7→ k′ � k,

and the image of the braiding on hom-objects. In the model of Z(A) as
VectG[G], this braiding is given fibrewise by:

Vg ⊗Wh → (g ·Wh)⊗ Vg.

Without loss of generality, let k1, k
′
1 and k2, k

′
2 be simple objects of K of degrees

g and g′, respectively. Then, by Lemma 4.40, morphisms f : k1 → k′1 of parity
p and f ′ : k2 → k′2 of parity p′ come from fibres over ωpg or ωp

′
g′, respectively.

This means that the image of B will take f ⊗ f ′ to (ωpg · f ′) ⊗ f , which,
remembering that ω acts non-trivially only if p′ = 1, we can rewrite as (−1)pp

′
g ·

f ′ ⊗ f . But this is exactly what the composite from Equation (4.3) does.

Recall that the braiding for a Z(A)-crossed braided category K is a natural
isomorphism between ⊗K : K�

c
K → K and the composite ⊗K ◦B. By Proposi-

tion A.24, this descends to a natural isomorphism between the images of these
functors, so Lemma 4.46 has the following consequence:

Corollary 4.47. The braiding for a Z(A)-crossed braided fusion category K
descends to a natural isomorphism between ⊗ : Kg �K → K and

Kg �K Switch−−−−→ K �Kg
(−)g�Id−−−−−→ K �Kg ⊗−→ K.

Because this braiding satisfies coherence, so will its image. This shows that

K satisfies item (iv) from Definition 4.29 (or item (iv) from Definition 4.31).
This completes the proof of Proposition 4.36.
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The assignment (−) is a 2-functor to G-XBF (or (G,ω)-XBF)

The aim of this subsection is to show that (−) is a 2-functor from Z(A)-XBF
to G-XBF (or (G,ω)-XBF in the super group case). We first show that it takes
functors of Z(A)-crossed braided categories to functors on G-crossed braided
fusion categories.

Proposition 4.48. Let F : K → K′ be a 1-morphism in Z(A)-XBF (Definition

4.26). Then F is a 1-morphism in G-XBF (or (G,ω)-XBF in the super group
case).

Proof. The fact that F is a (super) linear braided monoidal functor is immediate
from Proposition A.28 and the fact that F is braided monoidal. We still have

to show that F respects the direct sum decomposition of K and the G-action.
For the former, observe that F acts by morphisms of Z(A) on the hom-objects.
Viewing Z(A) as VectG[G], these morphisms are maps of vector bundles over
G, so will descend to G-grading preserving morphisms, and will in particular
send idempotents of degree g to idempotents of the same degree. Similarly,

on hom-objects F will act by G-equivariant maps, this implies that F will be
G-equivariant.

We also need that 2-morphisms in Z(A)-XBF are sent to 2-morphisms in
G-XBF (or (G,ω)-XBF).

Proposition 4.49. Let κ be a 2-morphism in Z(A)-XBF between F,G : K →
K′. Then κ is a 2-morphism in G-XBF (or (G,ω)-XBF in the super group
case.)

Proof. It is clear that κ will be monoidal. To see that it satisfies (κk)g = κkg

for each k ∈ K and g ∈ G, recall that a component κc of the enriched natural
transformation is a morphism

κc : Is → K′(F (c), G(c)).

In VectG[G], we have Is = C×G, so κc is constant on each conjugacy class of

G. Now, for k ∈ K homogeneous of degree h, the object kg is homogeneous of
degree ghg−1, that is, it comes from an idempotent of conjugate degree on the
same object. But as κk is defined by precomposing the image of κ with these
idempotents under forget and fibre, this means that κ satisfies the condition
(κk)g = κkg .

Degreewise tensor product

We now show that the assignment K 7→ K takes the product �
s

(Definition 4.7)

to the degreewise tensor product �
G

.
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Proposition 4.50. The 2-functor (−) takes the enriched Cartesian product of
Z(A)-crossed braided fusion categories to the degreewise product of G-crossed
braided fusion categories.

This will be a consequence of:

Lemma 4.51. Let K and L be Z(A)-crossed fusion categories. Then

K�
s
L = K�

G
L.

Proof. From Lemma 4.4, we know how to compare the forgetful image of the
Z(A)s-enriched Cartesian product with the A-enriched Cartesian product. Ap-
plying the fibre functor and idempotent completing gives functors:

H : K�
s
L ↔ K � L : Z,

with ZH = Id. We claim that the image of H is K�
G
L, the result will then

follow. To see this, observe that, when viewing Z(A) as G-graded (super) vector
spaces over G, η is the morphism that takes the degreewise product and includes

it into the convolution product. This means that H will descend to H as the
functor that takes homogeneous idempotents to their degreewise product, which
is what we wanted to show.

This completes the proof of Theorem 4.27.

4.3.3 From G-crossed braided fusion categories to Z(A)-
crossed braided fusion categories

In this section, we will give a construction that produces Z(A)-crossed braided
categories from G-crossed braided categories, and then extend this to a sym-
metric monoidal bifunctor Fix. This uses a variation of the G-fixed category
construction (see for example [Müg10]).

The G-fixed category

Definition 4.52. Let C be a (super) G-crossed (or (G,ω)-crossed) braided
fusion category. Then the G-fixed category CG is the Z(A)s-enriched and ten-
sored category with objects pairs (c, {ug}g∈G), where c is an object of C, and

the ug : (c)g
∼=−→ c are (even) isomorphisms such that:

(c)gh ((c)h)g

c (c)g

∼=

ugh (uh)g

ug
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commutes for all g, h ∈ G. The hom-objects CG((c, u), (c′, u′)) ∈ Z(A) are given
by

CG((c, u), (c′, u′)) = (C(c, c′), b),

where we equip C(c, c′) with the G-action:

g· : C(c, c′) (−)g−−−→ C((c)g, (c′)g)
(ug)∗◦(ug−1 )∗−−−−−−−−−→ C(c, c′),

and b is the half-braiding defined by, for every a = (V, ρ) ∈ Rep(G):

b : C(c, c′)a =
⊕
g∈G
C(cg, c′g)V

Switch−−−−−→
⊕
g∈G

V C(cg, c′g)
⊕ρ(g)⊗id−−−−−−→

⊕
g∈G

V C(cg, c′g),

where we have used the direct sum decomposition of C and used subscript g to
denote the homogeneous components, and the switch map is the switch map
of (super) vector spaces. Examining the definition (Definition A.40) of the
half-braiding in VectG[G], we see that this half-braiding corresponds to taking
CG((c, u), (c′, u′)) to be the equivariant vector bundle with fibre over g given by:

CG((c, u), (c′, u′))g = C(cg, c′g)0 ⊕ C(cωg, c′ωg)1,

where the subscripts 0 and 1 denote taking the even and odd summands respec-
tively. Composition is given by the composition of C.
Remark 4.53. The reader might observe that this is a variation of the homo-
topy fixed point construction for the G-action.

Lemma 4.54. The G-fixed category is indeed a Z(A)s-enriched and tensored
category.

Proof. Using Theorems 2.28 or 2.35, we can view Z(A)s as the category VectG[G]
of G-equivariant vector bundles over G, equipped with the (super) fibrewise ten-
sor product, that we will denote by ⊗f in both cases.

We need to show that the composition of C defines a morphism:

CG((c′, u′), (c′′, u′′))⊗f CG((c, u), (c′, u′))→ CG((c, u), (c′′, u′′)),

that is G-equivariant, factors over the (super) fibrewise tensor product, and
is compatible with the specified braiding. For the G-equivariance, we simply
observe that u′g ◦ u′g−1 = id. To see the composition factors over the fibrewise

(super) tensor product, observe that the direct sum decomposition of C implies
that any two morphisms f : cg → c′g and f ′ : c′h → c′′h will compose to 0 unless
g = h. For the even part of the hom-objects, this immediately implies that
the composition factors through the fibrewise tensor product. To examine what
happens for the odd parts of the hom-objects, we will start by assuming that
one of the morphisms is odd, say the one between c′ and c′′. In this case the
fibrewise super tensor product computes as (Definition 2.33), using the notation
from the proof of Lemma 4.40:

C(c′ωg, c′′ωg)g1 ⊗f C(cg′ , c′g′)g
′

0 =

{(
C(c′ωg, c′′ωg)1C(cωg, c′ωg)0

)g
for g′ = ωg

0 otherwise.
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We see that this corresponds again to morphisms of different degrees composing
to zero. The case where the other morphism is odd is similar. If both are odd,
we compute:

C(c′ωg, c′′ωg)g1 ⊗f C(cωg′ , c′ωg′)g
′

1 =

{(
C(c′ωg, c′′ωg)1C(cωg, c′ωg)1

)ωg
for g′ = g

0 otherwise,

from which we again see that the composition factors over the fibrewise super
tensor product. The specified braiding is exactly the one VectG[G], so this
same observation implies that the composition morphism commutes with the
braiding.

This construction takes G-crossed braided fusion categories to Z(A)-crossed
braided fusion categories.

Proposition 4.55. If A = Rep(G) (or A = Rep(G,ω)), then CG is a Z(A)-
crossed braided fusion category, with Z(A)-crossed tensor structure given by:

⊗ : CG�
c
CG → CG

(c, u) � (c′, u′) 7→ (cc′, u⊗ u′),

and on morphisms by the monoidal structure in C. The Z(A)-crossed braiding
is the natural transformation with the same components as the crossed braiding
on C.

Proof. The first step is to show the monoidal structure on morphisms really
factors over the convolution tensor product. We observe that, as the monoidal
structure on C is graded, we have:

(c1c2)g =
⊕

g1g2=g

c1,g1c2,g2 .

This gives a decomposition of the hom-object

C(c1c2, c1c′1) =
⊕
g∈G

⊕
g1g2=g

C(c1,g1c2,g2 , c′1,g1c′2,g2).

From this, we see that the monoidal structure in C will indeed factor over the
convolution product. To see that the crossed braiding induces a Z(A)-crossed
braiding, we observe that the half-braiding on CG(c, c′) restricts to the G-action
on the summands.

The 2-functor Fix

We now want to extend the G-fixed category construction to functors and nat-
ural transformations of (super) G-crossed braided categories.
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Definition-Propostion 4.56. Let F : C → C′ be a 1-morphism in G-XBF (or
(G,ω)-XBF). Then we define the associated G-fixed functor Fix(F ) as

F : (c, u) 7→ (F (c), F (u))

on objects and by
Fc,c : C(c, c′)→ C′(Fc, Fc′)

on hom-objects. This is a 1-morphism in Z(A)-XBF.

Proof. We need to show that this prescription indeed defines a Z(A)s-enriched
functor that is braided monoidal. On objects, there is nothing to show. On hom-
objects, we need to show that F acts by morphisms in Z(A), so is compatible
with the prescribed half-braiding, this follows from the G-equivariance of F .
The fact that Fix(F ) is braided monoidal is immediate from the definition of
the Z(A)-crossed braided monoidal structures on CG and C′,G.

To extend Fix to 2-morphisms, we define:

Definition 4.57. Let κ be a 2-morphism in G-XBF (or (G,ω)-XBF) between
F, F ′ : C → C′. Then Fix(κ) is the Z(A)-enriched natural transformation with
components:

Fix(κ)(c,u) : Is → C′(F (c), F ′(c)),

given fibrewise by κcg : C× {g} → C′(F (cg), F
′(cg)).

4.3.4 Equivalence between Z(A)-XBF and G-XBF (or (G,ω)-XBF)

We will now show that the 2-functors (−) and Fix are mutually inverse, this
will complete the proof of Theorem 4.27:

Proposition 4.58. The 2-functors (−) and Fix are mutually inverse.

As a first step, we will show that Fix(K) is equivalent to K. To do this, we
will need the following two technical lemmas:

Lemma 4.59. Let F : C → D be a fully faithful functor on an idempotent
complete category C. Then the essential image of F is idempotent complete.

Proof. Suppose that f ∈ EndD(F (c)) is an idempotent. By full faithfulness of
F , this f is the image of a unique g ∈ EndC(c), which is necessarily idempotent.
By idempotent completeness of C, there exists an object b ↪→ c corresponding
to g, which is mapped to a subobject F (b) ↪→ F (c) corresponding to f under
the functor F .

Lemma 4.60. Suppose that for each object c in an abelian category C we have
a natural assignment c 7→ (i(c) : c → B(c)), and that for every non-zero c the
map i(c) is non-zero. Then i(c) is monic for all c.
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Proof. Suppose that i(c) had some kernel k : k ↪→ c. Then applying our natural
assignment to k gives the commutative diagram:

k B(k)

c B(c).

i(k)

k B(k)

i(c)

The composite along the bottom is zero, as k is the kernel of i(c). By naturality,
B(k) is the kernel of B(i(c)), and therefore monic. So the bottom composite
being zero implies that i(k) is zero, implying that the kernel is trivial.

We are now in a position to prove that K and Fix(K) are equivalent.

Lemma 4.61. For each Z(A)-crossed braided fusion category K there is an
equivalence of Z(A)-crossed tensor categories

HK : K → Fix(K),

given by taking k ∈ K to (idk, {idk}g∈G), and on hom-objects by the isomorphism

K(k, k′) ∼= (Φ(K), ρ, b),

where ρ denotes the G-action on ΦK coming from the G-action on K(k, k′), and
b its half-braiding.

Proof. This functor is fully faithful by definition, so we only need to establish
essential surjectivity. That is, for every (f, u), we need to give an isomorphism
to an object (idk, {idk}g∈G). When f is zero, this is trivial, so assume f is
non-zero. As the essential image of a fully faithful functor on an idempotent
complete category is idempotent complete (Lemma 4.59), it suffices to find a
monic morphism

(f, u)→Is (idk, {idk}g∈G),

this will then correspond to a subobject of (idk, {idk}g∈G), which is necessarily
in the essential image. If (f, u) has as underlying idempotent f ∈ ΦK(k′, k′),
we will produce a morphism to

C[G]∗ · (idk′ , {idk′}g∈G) = (idk, {idk}g∈G),

where k = C[G]∗k′ and we equip C[G] with the left action of G. To produce

this morphism, observe that f defines a morphism in K(f, idk′), and therefore

gives rise to a morphism in Fix(K)((f, u), (idk′ , {idk′}g∈G)). The image under
the G-action for g ∈ G (see Definition 4.52) of f is:

f
(−)g7−→ fg

−◦(ug)−1

7−→ fgu−1
g .
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By adjunction in Z(A)s, a morphism degree Is to (idk, {idk}g∈G) is the same
as a fibrewise map:

f̃ : C[G]⊗s Is → Fix(K)((f, u), (idk′ , {idk′}g∈G))

that is equivariant for the G action. The G-equivariant vector bundle C[G]⊗s Is
is the bundle C[G] × G, where G acts on the fibres by left multiplication. We
define f̃ by f |{g}×G = fgu−1

g . To show that the morphism

Is → Fix(K)((f, u), (idk, {idk}g∈G))

is obtained in this way is monic, by Lemma 4.60 it suffices to show that f̃ is
non-zero. Restricting f̃ to {e} × G gives f , which is assumed to be non-zero.
Therefore, we have produced a monic morphism from (f, u) to (idk, {idk}g∈G),
which by Lemma 4.59 corresponds to an subobject of the form (idl, {idl}g∈G)
for some l ∈ K.

It is clear from the definition of HK that it will be a functor of Z(A)-crossed
braided categories.

As a second step, we will show that the HK are natural in the sense that:

Lemma 4.62. Let F : K → K′ be a 1-morphism in Z(A)-XBF. Then F and

the image of F under Fix ◦ (−) fit into a commutative diagram:

K Fix(K)

K′ Fix(K′).

HK

F Fix(F )

HK′

Proof. Let k ∈ K. Under the top composite in the diagram, this object is sent
to

(F (idk), F ({idk}g∈G) = (idF (k), {idF (k)}g∈G),

and the bottom composite is the same. On morphisms, it is similarly clear that
the diagram commutes on hom-objects.

The two Lemmas 4.61 and 4.62 together imply that Fix◦ (−) is isomorphic to
the identity on Z(A)-XBF. For the composite the other way around, we first
prove:

Lemma 4.63. Let C be a (super)-G-crossed braided fusion category. Then the

categories Fix(C) and C are equivalent.

Proof. We will define a dominant fully faithful functor

P̂C : ΦFix(C)→ C,
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after idempotent completion this will descent to an equivalence of categories.
On objects, this functor is given by (c, u) 7→ c, on morphisms we use the iso-
morphism

ΦFix((c, u), (c′, u′)) ∼= C(c, c′),
as Φ(−) simply forgets the G-action and half-braiding. This functor is clearly
fully faithful. To see that it is dominant, observe that for any object c ∈ C, the
object ⊕g∈Gcg is a fixed point for the G-action, and therefore (⊕g∈Gcg, {id}g∈G)
defines an object in Fix(C), which our functor will send to ⊕g∈Gcg. This object
has c as a summand, so we see our functor is indeed dominant.

Lemma 4.64. Denote the equivalence from Lemma 4.63 by

PC : Fix(C)→ C.

Then, for any 1-morphism F in G-XBF (or (G,ω)-XBF), the diagram

Fix(C) C

Fix(C′) C′

PC

Fix(F ) F

PC′

commmutes.

Proof. It suffices to show that the diagram

ΦFix(C) C

ΦFix(C′) C′

P̂C

ΦFix(F ) F

P̂C′

commutes, as it will descent to the desired diagram after idempotent completion.
On an object (c, u) ∈ ΦFix(C), the bottom route becomes

(c, u) 7→ (Fc, Fu) 7→ Fc,

which agrees with the top route. A similar diagram chase shows that this
diagram commutes on hom-objects.

The Lemmas 4.63 and 4.64 together show that the composite Fix(−) is nat-
urally isomorphic to the identity on G-XBF (or (G,ω)-XBF).

This finishes the proof of Proposition 4.58, and with that, the proof of Theo-
rem 4.27.



Chapter 5

From Braided Fusion
Categories over a
Symmetric Fusion Category
A to Z(A)-Crossed Braided
Categories

In this chapter we discuss how to obtain a Z(A)-crossed braided fusion category
from a braided fusion category containing A. This is the subject of the first
section, Section 5.1, and Theorem 5.17. We then proceed to show that this
construction has an inverse, this is Theorem 5.41.

5.1 Enriching

Our enriching procedure to obtain from a braided fusion category C containing
a symmetric fusion category A will be divided into two steps. The first is
enriching C over A, we will denote the result by C←−. It turns out C←− is A-

tensor (Definition A.20), but not braided. We will examine the failure of this
category to be braided in some detail, this will motivate the next step in the
construction. In the second step of the construction, we boost our A-enrichment
to a Z(A)s-enrichment, taking care to define the half-braidings to ensure the
result is Z(A)-crossed braided (Definition 4.20). We will show the result is
indeed Z(A)-braided in Theorem 5.17.

105
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5.1.1 Enriching over a symmetric subcategory

The enriched category

In this section, we consider the situation where we have a braided fusion category
C and containing a symmetric fusion category A.

Definition 5.1. Let C be a fusion category containing a symmetric fusion cat-
egory A. The left-associated A-enriched category C←− has the same objects as C
and C←−(c, c′) is defined by

A(a, C←−(c, c′)) = C(ac, c′). (5.1)

Here the action ofA comes from the postcomposingA → Z(C) with the forgetful
functor to C. The composition morphisms,

◦ : C←−(c′, c′′)⊗ C←−(c, c′)→ C←−(c, c′′),

are defined by observing that we have the following string of canonical isomor-
phisms:

A(a, C←−(c′, c′′)⊗ C←−(c, c′)) ∼= A( C←−(c′, c′′)∗ ⊗ a, C←−(c, c′))

∼= C( C←−(c′, c′′)∗ ⊗ ac, c′)
∼= C(ac, C←−(c′, c′′)⊗ c′)
ev→C(ac, c′′)
∼= A(a, C←−(c, c′′)).

(5.2)

Here ev is the unit of the adjunction given by (5.1), c.f. Definition A.11.
Similarly, we define the right-associated A-enriched category C−→, by represent-

ing a 7→ C(ca, c′).
Observe that Hom C←−

(c, c′) = C(c, c′). This means that we can view the mate

f̄ (Definition A.4) of f : c→a c
′ as a morphism in C. In terms of mates and the

composition in C, the composition of f : c→a c
′ and f ′ : c′ →a′ c

′′ in C←− is given
by

f ′ ◦ f = f̄ ′(ida′ ⊗ f̄), (5.3)

which in string diagrams reads as:

a′ a c

f̄

f̄ ′

c′′

. (5.4)
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Remark 5.2. Both C←− and C−→ are tensored C←− over A. For C−→, the tensoring

induces a functor Amop → End( C−→), where Amop denotes the monoidal opposite
of A.

The A-product �
A

(Definition A.17) between A-enriched categories obtained in

this way has some nice features. Corresponding to the product of f1 : c1 →a1 c
′
1

and f2 : c2 →a2 c
′
2 there is, by using the tensor product of the tensor structures

a map f̄1 ⊗C f̄2. It is tempting to represent this in string diagrams as:

a1 c1 a2 c2

f̄1 f̄2

c′1 c′2

,

Care should be taken, however, that, by Equation (A.11), the position of the
a’s is immaterial. To avoid confusion, we will therefore always keep the ob-
jects of A to the left when we are dealing with left enrichments. In drawing
string diagrams, this does mean that we need to cross A-strands past C-strands.
To emphasise such crossings are not actual braidings in C, we will draw them
unresolved as follows:

a1 a2 c1 c2

f̄1 f̄2

c′1 c′2

. (5.5)

When considering a morphism f : c1 � c2 →a c
′
1 � c′2, we will give a string

diagram presentation by first picking a factorisation (t, f1, f2):

f : a
t→ a1a2

f1f2→ C←−(c1, c
′
1) C←−(c2, c

′
2), (5.6)

and then using the tensor isomorphism to find mates for f1 and f2. There are
many different choices of factorisations for a given f . In terms of the triples, we
have the equivalence relation

(t, f1 ◦ g1, f2 ◦ g2) ∼ (g1g2 ◦ t, f1, f2).

A factorisation (t, f1, f2) can be presented in string diagrams by:

c1 c2a

f̄1 f̄2

c′1 c′2

. (5.7)
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Here the trivalent vertex represents the morphism t : a → a1a2 from Equation
(5.6).

Enriched monoidal structure

Definition 5.3. The tensor structure on C induces an associated A-monoidal
structure on C←− (and similarly on C−→). This A-monoidal structure is defined as
follows. The functor ⊗ : C ×C → C induces map on objects C←−�

A
C←− → C←−, where

we do still need to specify what it does on the additional morphisms. We should
therefore construct a map

⊗
C←−

: C←−(c1, c
′
1)⊗
A
C←−(c2, c

′
2)→ C←−(c1c2, c

′
1c
′
2). (5.8)

To do this, consider the following composite:

A(a1, C←−(c1, c
′
1)) ⊗

Vect
A(a2, C←−(c2, c

′
2)) = C(a1c1, c

′
1) ⊗

Vect
C(a2c2, c

′
2)

⊗C−→C(a1c1a2c2, c
′
1c
′
2)

(βa2,c1 )∗−→ C(a1a2c1c2, c
′
1c
′
2)

(5.9)

with the monoidal structure in C in the second line and the braiding between a2

and c1 in the last line. Setting ai = C←−(ci, c
′
i) for i = 1, 2, we obtain our desired

map from Equation (5.8) as the image of the tensor product of the identities
under this morphism.

In terms of mates, this translates to the following. Let f1 : c1 →a1 c′1 and
f2 : c2 →a2 c

′
2, following the above recipe we find:

f1⊗
C←−
f2 = f̄1⊗

C
f̄2(ida1 ⊗C βa2,c1 ⊗C idc2). (5.10)

In string diagrams, this becomes:

f̄1 f̄2

a1 a2 c1 c2

c′1 c′2

. (5.11)

Remark 5.4. To make this definition, it would have sufficed to assume that A
comes equipped with a central functor A → Z(C)→ C.

Lemma 5.5. The categories C←− and C−→ are A-monoidal, with the monoidal
structure from Definition 5.3.
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Proof. We will only provide a proof for C←−, the case of C−→ is similar. We need to
prove the structure above satisfies the interchange law, i.e. that the proposed
A-monoidal structure is indeed a functor. Checking functoriality boils down to
checking that the following diagram commutes:

C←−(c1 � c2, c
′
1 � c′2)⊗ C←−(c′1 � c′2, c

′′
1 � c′′2) C←−(c1, c

′′
1)⊗ C←−(c2, c

′′
2)

C←−(c1c2, c
′
1c
′
2)⊗ C←−(c′1c

′
2, c
′′
1c
′′
2) C←−(c1c2, c

′′
1c
′′
2).

⊗
C←−

�
A
⊗
C←−

◦(
C←−�
A
C←−

)

⊗
C←−◦ C←−

We will do this by checking that the precomposition of the two routes in this
diagram with

f1 ⊗ f2 ⊗ f ′1 ⊗ f ′2 : a1a2a
′
1a
′
2 → C←−(c1, c

′
1) C←−(c2, c

′
2) C←−(c′1, c

′′
1) C←−(c′2, c

′′
2)

are the same. This will be the case if and only if their mates are equal. Using
Equations (5.4) and (5.11) we see that we need to check:

f̄ ′1 f̄ ′2

f̄1 f̄2

a′1 a
′
2
a1 a2 c1 c2

=

f̄ ′1 f̄ ′2

f̄1 f̄2

a′1 a
′
2
a1 a2 c1 c2

, (5.12)

and this equation holds by naturality of the braiding in C.
The associators in C will descend to morphisms in C←− and still satisfy the

pentagon equations. We have to convince ourselves that these morphisms define
a natural isomorphism, with respect to the extra morphisms in the enriched
hom-objects C←−(c, c′) for c, c′ ∈ C. But by (A.2), all these extra morphisms are

just morphisms ac→ c′ for some a ∈ A. Using the pentagon equations on these
morphisms, this means the associators from C will also be natural for these extra
morphisms.

5.1.2 Braiding

In the previous section, we only used the half-twists βa,c for a ∈ A and c ∈ C,
and the braiding in A. From here onward, we will need that C is itself braided,
and that A is a full symmetric subcategory of A.

A second A-tensor structure

Since we made a choice to use β rather than β−1 in Definition 5.3, we also have:
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Definition 5.6. We define − ⊗β − : C←−�
A
C←− → C←−, by taking it to be − ⊗C −

on objects and on morphisms the image of the identity under the composite

A(a1, C←−(c1, c
′
1))⊗A(a2, C←−(c2, c

′
2)) = C(a1c1, c

′
1) ⊗

Vect
C(a2c2, c

′
2)

⊗C−→C(a1c1a2c2, c
′
1c
′
2)

(β−1
c1,a2

)∗

−→ C(a1a2c1c2, c
′
1c
′
2),

where ai = C←−(ci, c
′
i) for i = 1, 2.

The proof that this indeed specifies an A-monoidal structure is analogous to
the proof of Lemma 5.5. In string diagrams for the mates of f1 : c1 →a1 c

′
1, and

f2 : c2 →a2 c
′
2 this monoidal structure gives:

f̄1 f̄2

a1 a2 c1 c2

c′1 c′2

. (5.13)

A Problem with the Braiding

Remark 5.7. One can attempt to lift the braiding of C to a braiding on C←−. A
problem one encounters here is that the braiding will no longer be natural with
respect to the additional morphisms. In particular, the diagram

c1c2 c2c1

c′1c
′
2 c′2c

′
1

βc1,c2

f1⊗f2
a1a2

f2⊗f1
a2a1

βc′1,c
′
2

fails to commute in general. It is interesting to examine its failure to commute.
In terms of the mates, this diagram becomes the outside of:

a1a2c1c2 a2a1c2c1

a1c1a2c2 a2c2a1c1

c′1c
′
2 c′2c

′
1

βa1,a2⊗βc1,c2

βa2,c1 βa1,c2
βa1c1,a2c2

f̄1⊗f̄2 f̄2⊗f̄1

βc′1,c
′
2

,

here the braiding βa1,a2 in the top row comes from the switch map for the A-
product that was implicit in the previous diagram. The map in the middle will
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help us understand the failure of commutativity. Note that, by naturality of
the braiding in C, the lower square of the diagram does commute. It therefore
suffices to consider the top square, in string diagrams the top and bottom routes
read

a1 a2 c1 c2

a2 c2 a1 c1

and

a1 a2 c1 c2

a2 c2 a1 c1

, (5.14)

respectively. We see that these diagrams differ from each other by a precompo-
sition with the braiding monodromy βc1,a2βa2,c1 between a2 and c1.

5.1.3 To Z(A)-Crossed Braided

One of the desiderata for the reduced tensor product is that it tensors objects
with the same braiding behaviour with respect to A to objects with that same
behaviour. We can do this by doing a construction at the level of the Hom-
objects. In particular, we will make use of a symmetric tensor product ⊗ on
Z(A) that picks out the parts of objects where their braidings with A agree
(see Theorem 2.22). The definition of Z(A) is given in Definition A.36, and
this symmetric tensor product is introduced in Section 2.3. In the language of
Chapter 4, we want to prove:

Theorem 5.8. Let C be a braided fusion category containing a full symmetric
subcategory A, then the category C←− defined in Definitions 5.10, 5.11, 5.13, with

Z(A)s-tensoring from Proposition 5.16, crossed tensor structure from Proposi-
tion 5.17 and crossed braiding from Proposition 5.22 is Z(A)-crossed braided
fusion (Definitions 4.16 and 4.20).

The Z(A)s-enrichment

We will now show that the A-enrichment from the previous sections gives rise
to an enrichment over (Z(A),⊗s). That is, we need to define the enriched hom-
functor with values in Z(A), the composition, and the identity morphisms.

Proposition 5.9. Let C be a braided tensor category containing a spherical
symmetric fusion category A. Then the category C←− defined above is a Z(A)s-

enriched and tensored category.

The first step towards enriching C over Z(A)s is:

Definition-Propostion 5.10. Let C be a braided category containing A as a
braided subcategory. Then the functor C←− : C←−

op× C←− → A lifts (with respect to

the forgetful functor) to a functor C←− to Z(A). The half-braiding b on

C←−(c, c′) = ( C←−(c, c′), b)
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is defined by:

a C←−(c, c′)
∼=−→ C←−(c, ac′)

(β−1

a,c′β
−1

c′,a)∗
−−−−−−−−→ C←−(c, ac′)

∼=−→ a C←−(c, c′)
s−→ C←−(c, c′)a, (5.15)

where s denotes the symmetry in A. The image under C←− of (c, c′) will be called

the Z(A)-enriched hom-object.

Proof. Using that a = C←−(I, a), we can unpack the half-braiding from Equation

(5.15) in terms of the mates for ida : I→a a and f2 : c→a′ c
′ as:

a a′ c

f̄2

a c′

7→

a a′ c

f̄2

ac′

=

a a′ c

f̄2

ac′

(5.16)

where we interpret the last diagram as the mate to the tensor product of a
morphism aa′a∗ → C←−(c, c′) and ida : I→ a. To show the half-braiding satisfies

(A.14), one uses that the braiding in C satisfies (A.14).
What we have shown so far, is that every hom-object can be viewed as an ob-

ject in the Drinfeld centre of A. To show this defines a functor from C←−
op× C←− to

Z(A), we also need to establish that this is compatible with the morphisms. To
do this, we need to check that the morphisms f∗ and g∗ induced by morphisms
f : b →a′′′ c and g : c →a′ c

′ are morphisms in Z(A). That is, we need to show
that

a C←−(c, c′) C←−(c, c′)a

a C←−(b, c′) C←−(b, c′)a

id⊗f∗

β C←−(c,c′)

f∗⊗id
β C←−(b,c′)

and

a C←−(c, c′) C←−(c, c′)a

a C←−(c, c′′) C←−(b, c′′)a

id⊗g∗

β C←−(c,c′)

g∗⊗id
β C←−(c,c′′)
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commute. The former is obvious, the latter comes down to checking, for each
f ′ : c→a′′ c

′, that

a a′ a′′ c

f̄ ′

ḡ

c′′ a

=

a a′ a′′ c

f̄ ′

ḡ

c′′ a

, (5.17)

which follows from the naturality of the braiding and the fact that a and a′ are
transparent to each other.

To show that theA-enrichment really can be modified to an Z(A)s-enrichment,
we also need to establish that there is a composition morphism. This composi-
tion morphism will factor over the symmetric tensor product ⊗s for Z(A), see
Definition 2.11. We will denote the resulting category by C←−.

Definition 5.11. Let c, c′, c′′ ∈ C, and let C←−(c, c′) = ( C←−(c, c′), β′) and C←−(c′, c′′) =

( C←−(c′, c′′), β′′) denote the lifts of the A-enriched hom to Z(A) from Definition

5.10. Then we define the composition morphism for the Z(A)s-enrichment by
the composite:

Φ( C←−(c′, c′′)⊗s C←−(c, c′)) ↪→ C←−(c′, c′′) C←−(c, c′)
◦→ C←−(c, c′′), (5.18)

on the underlying objects in A.

In order for this definition to make sense, we need the composite from Equation
(5.18) to define a morphism in Z(A):

Lemma 5.12. The composite from Equation (5.18) is a morphism in Z(A).

Proof. We need to check that the morphism commutes with the braiding. That
is, we need to show that the diagram

a( C←−(c′, c′′)⊗s C←−(c, c′)) a C←−(c′, c′′) C←−(c, c′) a C←−(c, c′′)

( C←−(c′, c′′)⊗s C←−(c, c′))a C←−(c′, c′′) C←−(c, c′)a C←−(c, c′′)a

β

◦

(id⊗s)◦((β−1

a,c′′◦β
−1

c′′,a)∗⊗id) (β−1

a,c′′◦β
−1

c′′,a)∗

◦

commutes. Here, leftmost square is the definition of the half-braiding (Equation
2.12) on C←−(c′, c′′)⊗s C←−(c, c′) in terms of the half-braiding on C←−(c′, c′′) (Equation

5.15), where we have used monoidality of the symmetry in A to compose two
instances of the symmetry. In the rightmost square, both routes are using the
composition morphism and then composing with the braiding in C, so this will
commute by the naturality of the braiding.
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Additionally, we need to give for each c ∈ C an identity morphism 1c : Is →
C←−(c, c) and check that it indeed specifies an identity in the sense that the

following diagram commutes

C←−(c, c′)⊗s Is C←−(c′, c)

C←−(c, c′)⊗s C←−(c, c) ,

ρ

id⊗s1c
◦ (5.19)

where ρ denotes the left unitor, as well as the corresponding diagram for the
left unitor.

Definition 5.13. The Z(A)-unit morphism 1c : Is → C←−(c, c) for c ∈ C is the

mate for the morphism

∑
i∈O(A)

i i∗ c

c

.

We need to check that this indeed specifies a morphism in Z(A), and that it
satisfies (5.19).

Lemma 5.14. The unit morphism is a morphism in Z(A), that is:

aIs a C←−(c, c)

Isa C←−(c, c)a,

1c

βa,Is βa, C
←−

(c,c)

1c

commutes.

Proof. Recalling that the braiding βa, C
←−

(c,c) was computed in terms of mates in

Equation (5.16), the top and bottom routes compute as

Is c

c

a

and

Is c

c

a

,
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respectively. The latter has summands

i i∗ c

c

a

φ

φ∗
=

i i∗ c

c

a

φ

φt
,

where the φ give a resolution of the identity on ai. The last diagram sums to the
top route, remembering that the objects in A are transparent to each other.

Lemma 5.15. The identity morphism satisfies the triangle equality from Equa-
tion (5.19).

Proof. The unitor for Z(A)s is given in Lemma 2.18. Let z ∈ Z(A) and let
f : z → C←−(c, c′) be a morphism. The mate for the image of f under ρ is:

z ⊗ Is c
5

f̄

,

where we simplified a double symmetry between z and the summand of the
strand, coming from the definition of the braiding on C←−(c, c′). On the other

hand, the bottom route is the composite of f with 1c, so in terms of mates
becomes:

z ⊗ Is c
5

f̄

,

so the identity morphism indeed satisfies Equation (5.19).
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Z(A)s-Tensoring

The category C←− produced above is also tensored over Z(A)s.

Proposition 5.16. Let C be a braided fusion category containing A. Then for
all c, c′ ∈ C and (a, β) ∈ Z(A), the subobject Πβ(ac) associated to the idempotent

Π(a,β),c =
∑

i∈O(A)

s

β

a c

i

satisfies
Z(A)((a, β), C←−(c, c′)) ∼= C(Πβ(ac), c′).

Proof. We observe that Πβ(ac) is well-defined, the idempotent Π(a,β),c com-
mutes with the braiding by naturality of the braiding in C.

To see the isomorphism, we notice that, in Z(A), the hom-spaces between
(a, β) and (a′, β′) are the equalisers for

A(a, a′)
⊕coevi−−−−→

⊕
i∈O(A)

A(i∗ia, a′)
∼=−→ A(ia, ia′)

⊕β∗i ,β−1
i,∗−−−−−−→

⊕
i∈O(A)

A(ai, ia′)

∼=−→
⊕

i∈O(A)

A(aii∗, a′)
⊕evi−−−→ A(a, a′)

(5.20)

and the identity on A(a, a′). The hom-object C(Πβ(ac), c′) is the equaliser for
precomposition with Π(a,β),c and the identity on C(ac, c′). Precomposition with
Π(a,β),c takes a morphism f : ac→ c′ to the morphism

s

β

a c

i

f

=

β

a c

i

f

,
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where we have used naturality of the braiding in C on ac. Under the isomorphism

C(ac, c′) ∼= A(a,C(c, c′)),

this is sent to the composite from Equation (5.20). So we see that the left and
right hand side are equalisers for the same morphisms, and therefore canonically
isomorphic.

Monoidal structure

The monoidal structure on C will give rise to a monoidal structure on the Z(A)-
enriched version of C. Unlike previously, this monoidal structure will not factor
over the (Z(A),⊗s)-product, but will rather factor over a product where we
combine both monoidal structures on Z(A). That is, it will be a Z(A)-crossed
tensor category (Definition 4.16).

Proposition 5.17. If C is a braided tensor category containing a symmet-
ric spherical fusion category A, then C←− is Z(A)-crossed tensor (see Defini-

tion 4.16), with monoidal structure given in Definition 5.3 lifted to the Z(A)s-
enriched category.

Proof. As the monoidal structure from Definition 5.3 is compatible with the
composition, and the composition in C←− is a restriction of this, the lift of the

monoidal structure will be compatible with composition. We still need to show
that the morphisms

C←−(c1, c
′
1)⊗c C←−(c2, c

′
2)
⊗c1�c2,c

′
1�c′2−−−−−−−−−→ C←−(c1c2, c

′
1c
′
2)

are compatible with the braiding, so that they lift to Z(A). In C←−�
c
C←−, the

left hand object will be equipped with the consecutive braiding on both factors,
while the braiding on the right hand side comes from the braiding monodromy
of c1c2. Comparing these braidings with some a ∈ A in terms of mates for
f1 : c1 →a1 c

′
1 and f2 : c2 →a2 c

′
2 gives

f̄1 f̄2

a1 a2 c1 c2

c′1 c′2

a

=

f̄1 f̄2

a1 a2 c1 c2

c′1 c′2

a

,
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for first braiding and then applying ⊗ and the vice versa, respectively. These
two sides are indeed equal.

Z(A)-crossed braiding

We will now show that the braiding for C gives rise to a Z(A)-crossed braiding,
see Definition 4.20. The first step is to examine what the braiding functor B
from Definition 4.13 becomes for C←−�

c
C←−. To do this, we define:

Definition-Propostion 5.18. The functor β−2 : C←−�
A
C←− → C←−�

A
C←− is defined

as follows. Note that we have the following isomorphisms:

C←−�
A
C←−(c1 � c2, c

′
1 � c′2) = C←−(c1, c

′
1)⊗ C←−(c2, c

′
2)

= C←−(c1, C←−(c2, c
′
2)c′1).

This last object has an automorphism induced by the inverse braiding mon-
odromy of C←−(c2, c

′
2) and c′1. In terms of mates for f : c1�c2 →a c

′
1�c

′
2 factored

over the tensor product f1 : c1 →a1 c
′
1 and f2 : c2 →a2 c

′
2 this becomes:

a1 c1a2 c2

f̄1 f̄2

c′1 c′2

7→

a1 c1a2 c2

f̄1 f̄2

c′1 c′2

. (5.21)

We remind the reader of the convention discussed around Equation (5.5), and
emphasise that the double braiding in this diagram really is a double braiding,
whereas the first crossing does not have any meaning. Unfortunately, this de-
scription of the action of the double braiding in terms of mates makes it unclear
how to apply the isomorphism to get back to a morphism c1 � c2 →a1a2 c

′
1 � c

′
2,

as it is not manifestly of the form in Equation (5.5). To bring it into this form,



CHAPTER 5. BRAIDED FUSION TO Z(A)-CROSSED BRAIDED 119

we bring down the double braiding to get:

a1 a2 c1 c2

f̄1 f̄2

c′1 c′2

, (5.22)

which, comparing with (5.7), we can interpret as the mate for the tensor product
of morphisms a1a2a

∗
2 → C←−(c1, c

′
1) and f2 : c2 →a2 c′2, with trivalent vertex

a1a2 → (a1a2a
∗
2)⊗ a2.

These automorphisms induced by the inverse braiding monodromies as above
compile to an automorphism β−2 of C←−�

A
C←−.

Proof. We check that the following diagram commutes

C←−(c1, c
′
1) C←−(c2, c

′
2) C←−(c′1, c

′′
1) C←−(c′2, c

′′
2) C←−(c1, c

′′
1) C←−(c2, c

′′
2)

C←−(c1, c
′
1) C←−(c2, c

′
2) C←−(c′1, c

′′
1) C←−(c′2, c

′′
2) C←−(c1, c

′′
1) C←−(c2, c

′′
2).

β−2

◦

β−2

◦

In terms of mates for f1 : c1 →a1 c′1, f ′1 : c′1 →a′1
c′′1 , f2 : c2 →a2 c′2 and
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f ′2 : c′2 →a2 c
′′
2 , this becomes:

a′1 a1 c1 a′2 a2 c2

f̄1

f̄ ′1

f̄2

f̄ ′2

c′′1 c′′2

=

a′1 a1 c1 a′2 a2 c2

f̄1

f̄ ′1 f̄2

f̄ ′2

c′′1 c′′2

(5.23)

The strand a′2 undercrosses the strand c′1, conform the conventions introduced.
Using that a′1 and a2 are transparent to each other, we see that these string
diagrams are indeed equal.

We can compute B in terms of this functor:

Lemma 5.19. Let C←− be as above. The braiding functor B (see Definition 4.13)

on C←−�
c
C←− is given by the composite of the functor β−2 (Definition 5.18) with

the symmetry in A.

Proof. This is immediate from the definition of the half-braidings on the hom-
objects (Definition 5.10).

The braiding is by definition a natural transformation from ⊗ C
←−

to ⊗ C
←−
◦ B.

So, our next step is to compute the composite of B with the monoidal structure.
It turns out that the resulting functor can be viewed as the monoidal structure
⊗β on C←− from Definition 5.6. A similar argument to the proof of Proposition

5.17 shows that ⊗β defines a monoidal structure on C←−.

Lemma 5.20. The functor −⊗β − is equal to the functor obtained by precom-
posing −⊗ C

←−
− with β−2.

Proof. We only need to check the functors agree on morphisms, so let f1 : c1 →a1

c′1 and f2 : c2 →a2 c
′
2 be morphisms in C←−. Their image under −⊗β − is shown
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in Equation (5.13). Their image under the composite of β−2 and −⊗− is given,
in string diagrams, by:

a1 a2 c1 c2

f̄1

f̄2

c′1 c′2

, (5.24)

which is indeed equal to Equation (5.13), using that a1 and a2 are transparent
with respect to each other.

We will now show that the braiding is a natural transformation between these
two monoidal structures on C←−, where we compose one with the switch map. We
will then lift this result to C←−.

Lemma 5.21. The braiding in C induces a natural isomorphism between the
functors − ⊗β − : C←−�

A
C←− → C←− and the composite of − ⊗ − : C←−�

A
C←− → C←−

with the switch map for the A-product. This isomorphism satisfies the hexagon
equations.

Proof. We want to show the diagram

c1c2 c2c1

c′1c
′
2 c′2c

′
1

βc1,c2

f1⊗βf2
a1a2

f2⊗f1
a2a1

βc′1,c
′
2

commutes for all f1 : c1 →a1 c
′
1 and f2 : c2 →a2 c

′
2. In terms of the mates, this

diagram becomes:

a1a2c1c2 a2a1c2c1

a1c1a2c2 a2c2a1c1

c′1c
′
2 c′2c

′
1

βa1,a2⊗βc1,c2

β−1
a2,c1

βc2,a1

f̄1⊗f̄2 f̄2⊗f̄1

βc′1,c
′
2

.
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Writing this in terms of string diagrams:

a1 a2 c1 c2

f̄1 f̄2

c′1c′2

=

a1 a2 c1 c2

f̄1f̄2

c′1c′2

.

The hexagon equations follow from the hexagon equations for the braiding in
C.

Proposition 5.22. Let C be a braided tensor category containing a spherical
symmetric fusion category A. Then the category C←− is a Z(A)-crossed braided

tensor category.

Proof. We have already shown in Proposition 5.17 that C←− is Z(A)-crossed ten-

sor. We have to show that the braiding for C gives a natural transformation
between the tensor structure and the composite of B (Definition 4.13) with the
tensor structure. We know that B computes as β−2 ◦ SwitchA, by Lemma 5.19.
So we see that the composite

⊗ ◦B = ⊗ ◦ β−2 ◦ SwitchA = ⊗β ◦ SwitchA,

where the last equality is Lemma 5.20. But, by Proposition 5.21, the braiding
in C induces a natural transformation between this functor and ⊗.

Enriching the Commutant of A
We will now for a category C←− obtained by the enriching procedure above, give

a characterisation of the neutral subcategory (see Definition 4.23) C←−A in terms

of the so-called braided commutant of A in C.
Definition 5.23. Let C be a braided fusion category with braiding β and let
B be a braided monoidal full subcategory. Then the braided commutant of B in
C is the full subcategory with objects

Z2(B, C) = {c ∈ C|βc,b ◦ βb,c = idbc ∀b ∈ B}.

When B = C, we will denote this by Z2(C). This Z2(C) is called the Müger
centre of C.

When A is a symmetric subcategory of C the commutant Z2(A, C) contains
A.
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Proposition 5.24. Denote by Z2(A, C)
←−−−−−−

⊂ C←− the full subcategory on the objects

of Z2(A, C). Then:
Z2(A, C)
←−−−−−−

= CA.

Proof. As this is a statement about small full subcategories, it suffices to show
that Z2(A, C)

←−−−−−−
⊂ CA and Z2(A, C)

←−−−−−−
⊃ CA at the level of objects.

The inclusion Z2(A, C)
←−−−−−−

⊂ CA follows directly from the way the half-braidings

on C←−(c, c′) are defined in Definition 5.10: in Equation (5.15) the morphism

(β−1
a,c′β

−1
c′,a)∗ is just the identity, so the composite becomes the symmetry in A

between C←−(c, c′) and a.
For the reverse inclusion, suppose that c is such that its Yoneda embedding
C←−(−, c) factors through A. This means that for each c′ ∈ C, the hom-object

C←−(c′, c) is C←−(c′, c) equipped with the symmetry in A. Looking at the definition

(Equation (5.15)) of the half-braiding, we see that this implies that (β−1
a,c′β

−1
c′,a)∗

is the identity on C←−(c′, c) for all c′. By the Yoneda lemma this means that

β−1
a,c′β

−1
c′,a is the identity on ac, which is what we wanted to show.

We observe the following, which is immediate from the above proposition

combined with the fact that the composite A ↪→ Z(A)
Φ−→ A of the forgetful

functor with the inclusion functor is the identity on A:

Corollary 5.25. Let C be a braided fusion category containing A, and assume
that Z2(A, C) = C. Then:

C←− = C←−,

where K for a Z(A)s-enriched category K was introduced in Definition 4.2.

5.2 De-enriching

5.2.1 The De-Enriching 2-Functor

Lemma 5.26. The functor

A(IA,−) : A → Vect

is symmetric lax monoidal, with lax structure given by:

A(IA, IA) ∼= IVect

µa,a′ : A(I, a)A(I, a′) ⊗A−−→ A(II, aa′) (I→II)∗−−−−−→∼= A(I, aa′),

for a, a′ ∈ A.
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Proof. As the unit part of the lax structure is an isomorphism, there is noth-
ing to check there. To check compatibility of µa′,a′′ with the associators, let
a, a′, a′′ ∈ A. We need to show that:

A(I, a)A(I, a′)A(I, a′′) A(I, a)A(I, a′a′′)

A(I, aa′)A(I, a′′) A(I, aa′a′′),

µa′,a′′

µa,a′ µa,a′a′′

µaa′,a′′

commutes. Using the definition of µ, this is equivalent to checking that

A(I, a)A(I, a′)A(I, a′′) A(I, a)A(II, a′a′′)

A(II, aa′)A(I, a′′) A(III, aa′a′′)

⊗A

⊗A ⊗A
⊗A

commutes, but this is a direct consequence of the associativity of ⊗A. To see
that this is a symmetric functor, consider:

A(I, a)A(I, a′) A(I, a′)A(I, a)

A(II, aa′) A(II, a′a)

A(I, aa′) A(I, a′a),

sVect

⊗A ⊗A
(sA)∗

∼= ∼=
(sA)∗

the bottom square commutes by naturality of the symmetry and its compatibil-
ity with the unitors, and the top square commutes as this is what it means for
the symmetry to be a natural transformation between ⊗ and ⊗ ◦ Switch.

Definition 5.27. Let K ∈ ALinCat. The de-enrichment of K is the linear
category obtained from K by changing basis along the symmetric lax monoidal
functor A(IA,−) : A → Vect. This is the category with objects those of K,
and where the morphisms between two such objects a and b are K(a, b), c.f.
Notation A.1.

If the category K is Z(A)s-enriched, then de-enriching is the composite of this
construction with change of basis along the forgetful functor Z(A)→ A.

Notation 5.28. We will denote by LinCat the 2-category ALinCat with
A = Vect. Its objects are just linear categories, and its Vect-product, that
will be denoted by �, is the Cauchy completion of the familiar Deligne tensor
product of linear categories.

The following is a consequence of the general statements about change of
basis, Propositions A.24 and A.31.
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Corollary 5.29. For all symmetric fusion categories A, de-enrichment induces
a bifunctor

DeEnrich : ALinCat→ LinCat.

The composite of de-enrichment with the forgetful functor Z(A)→ A induces
a bifunctor

DeEnrich((−)) : Z(A)LinCat→ LinCat.

Using Proposition A.27 we see:

Corollary 5.30. Let K be A-monoidal, then DeEnrich(K) is a tensor category.

Similarly, we have:

Lemma 5.31. Let K be braided A-monoidal, then DeEnrich(K) is a braided
tensor category.

Definition 5.32. We let the comparison functor

M : DeEnrich(K) � DeEnrich(L)→ DeEnrich(K�
c
L)

be the functor obtained from Lemma A.26 together with Lemma 4.19.

Corollary 5.33. Let K be Z(A)-crossed tensor, then DeEnrich(K) is a tensor
category, with tensor stucture given by:

DeEnrich(K)�DeEnrich(K)
M−→ DeEnrich(K�

c
K)

DeEnrich(⊗)−−−−−−−−−→ DeEnrich(K).

Proof. This combines Lemma 4.19 with Corollary 5.30.

Lemma 5.34. Let B be as in Definition 4.13. The linear functor DeEnrich(B)
fits into the following commutative diagram with the switch map Switch in
LinCat:

DeEnrich(K) � DeEnrich(L) DeEnrich(K�
c
L)

DeEnrich(L) � DeEnrich(K) DeEnrich(L�
c
K)

M

Switch DeEnrich(B)

M

Proof. Both routes are the same on objects, so we have to check that:

K(k, k′)L(l, l′) DeEnrich(K(k, k′)⊗c L(l, l′))

L(l, l′)K(k, k′) DeEnrich(L(l, l′)⊗c K(k, k′)),

switch

µ

β

µ

commutes. De-enriching just picks out the unit summands of the right hand
column, and µ is inclusion. Recall that any half braiding β : −⊗a⇒ a⊗− for
an object a ∈ A satisfies βI = ρ−1 ◦λ = sI,a. This means that β agrees with the
switch in vector spaces on the image of µ, which is what we wanted to show.
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Proposition 5.35. Let K be a Z(A)-crossed braided A-monoidal category, then
DeEnrich(K) is a braided tensor category.

Proof. From Corollary 5.33 we read off that the braiding would have to be a
natural isomorphism filling in the following diagram:

DeEnrich(K) � DeEnrich(K) DeEnrich(K) � DeEnrich(K)

DeEnrich(K�
c
K) DeEnrich(K�

c
K)

DeEnrich(K).

Switch

M M

DeEnrich(B)

DeEnrich(⊗) DeEnrich(⊗)

We recognise the top square as the square from Lemma 5.34, and the bottom
square is the image under DeEnrich(−) of the defining triangle for the braiding
(Definition 4.20). This means the image under DeEnrich(−) of the braiding
for K will give a braiding for DeEnrich(K).

5.2.2 Equivalence between braided categories containing
A and Z(A)-crossed braided categories

The goal of this section is to show that the construction C 7→ C←− outlined in Sec-

tion 5.1 above gives an equivalence of 2-categories between a 2-category BFC/A
of braided fusion categories containing A and Z(A)−XBT (see Definition 4.26),
with inverse given by DeEnrich(−). In defining the 2-category BFC/A, there
are several choices to be made, we use the following definition:

Definition 5.36. The 2-category of braided fusion categories containing the
symmetric fusion category A BFC/A is the 2-category with

• objects: braided fusion categories C with a braided monoidal embedding
A ⊂ C,

• morphisms: braided monoidal functors that restrict to the identity on A,

• 2-morphisms: monoidal natural transformations that restrict to the iden-
tity natural transformation on A.

Remark 5.37. There are several ways of making this definition less restrictive.
First of all, we can allow natural transformations to be something else than
just the identity on A. Second of all, we could ask for the restriction of the
functors to A to be a self-equivalence of A, or even an arbitrary endofunctor.
The definition given here is the one that fits with Definition 4.26.

Our first goal is to extend C 7→ C←− to a 2-functor, as so far we have only

defined it on the objects of BFC/A. To specify what it does on functors:
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Definition-Propostion 5.38. Let F : C → C′ be morphism in BFC/A, then
the associated Z(A)-enriched functor

F←− : C←− → C←−
′,

is the functor which acts as F on objects. On morphisms, we first define the
morphisms F←−c,c′ ∈ A by observing that the composite:

C(ac, c′) Fac,c′−−−−→ C′(F (ac), F (c′)) ∼= C′(aF (c), F (c′)),

where the last isomorphism comes from the monoidality of F and the fact that
F is the identity on A, gives for each c, c′ ∈ C a natural transformation from
C(−c, c′) : A → Vect to C′(−F (c), F (c′)) : A → Vect. This natural transforma-
tion induces a morphism:

F←−c,c′ : C←−(c, c′)→ C←−
′(Fc, Fc′).

This morphism takes the mate f̄ : ac → a for a morphism f : c →a c′ to

¯F←−(f) : aF (c)
∼=−→ F (ac)

f̄−→ F (c′), where the first map is the monoidality iso-
morphism for F .

This F←−c,c′ commutes with the braidings on C←−(c, c′) and C←−
′(Fc, Fc′) for each

c, c′ ∈ C, and combine to a Z(A)s-enriched functor. Furthermore, F←− is braided

monoidal and is compatible with the A-tensoring (c.f. Definition 4.26).

Proof. We start by observing that, as F is braided, the morphism F←−c,c′ will be

compatible with the braiding and therefore define a morphism F←−c,c′ in Z(A).

These morphisms will combine to an Z(A)s-enriched functor, to see that it
preserves composition, it is enough to show that for all c, c′, c′′ ∈ C:

C←−(c, c′) C←−(c′, c′′) C←−(c, c′′)

C←−
′(Fc, Fc′) C←−

′(Fc′, F c′′) C←−
′(Fc, Fc′′).

◦

F←−c,c′⊗F←−c′,c′′ F←−c,c′′

◦

On mates for f : c→a c
′ and f ′ : c′ →a′ c

′′, the top route computes as:

a′aFc
∼=−→ F (a′ac)

f̄ ′◦(ida′⊗f̄)−−−−−−−→ F (c′′),

whereas the bottom route becomes:

a′aFc
∼=−→ a′F (ac)

ida′F (f̄)−−−−−→ a′F (c′)
∼=−→ F (a′c′)

F (f̄ ′)−−−→ F (c′′).

Using the fact that the monoidality isomorphism for F is natural, we can ex-
change the middle two morphisms to get:

a′aF (c)
∼=−→ F (a′ac)

F (f̄ ′◦(ida⊗ ¯F←−(f)))

−−−−−−−−−−−−→ F (c′′),
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where we have also used the fact that F preserves composition, and that the
monoidality isomorphisms for aF (c) and a′F (ac) compose to the monoidality
isomorphism for F (a′ac).

Finally, we observe that as F preserves the braiding on C, it will also preserve
the braiding on C←−.

On the natural transformations, we use the following:

Definition-Propostion 5.39. Let κ : F ⇒ G be a 2-morphism between two
morphisms in BFC/A between C and C′. Then the associated enriched natural
transformation κ←− : F←− ⇒ G←− is given by the mate to κ. This natural transfor-

mation satisfies the condition from Definition 4.26.

Proof. The condition from Definition 4.26 follows directly from the fact that κ
is monoidal and restricts to the identity on A.

With these assignments, we can now define:

Definition-Propostion 5.40. The assignment (−)
←−

defines a bifunctor

(−)
←−

: BFC/A → Z(A)−XBT.

Proof. We have to check that this assignment preserves composition of functors
and of natural transformations. The composite of mates is the mate of compos-
ites for degree Is-morphisms, and similarly, as the action of a composition of
functors on hom-objects is by the composition of the maps the functors induce
on hom-objects, the image of the composition under (−)

←−
will be the composite

of the images.

Theorem 5.41. The bifunctors DeEnrich(−) and (−)
←−

are mutually inverse.

Proof. The composite DeEnrich(−) ◦ (−)
←−

is clearly the identity. For the other

composite, we observe that, for K ∈ Z(A)-XBF, the underlying objects in A
of the hom-objects of DeEnrich(K)

←−−−−−−−−−−
are characterised by:

A(a,DeEnrich(K)
←−−−−−−−−−−

(k, k′)) ∼= DeEnrich(K)(ak, k′)

= A(IA,K(ak, k′))

∼= A(IA, a∗K(k, k′))

∼= A(a,K(k, k′)),

where the first isomorphism is theA-tensoring (Definition 4.2) of DeEnrich(K)
←−−−−−−−−−−

,

the second the definition of DeEnrich, the third is Lemma A.13, and the final
equality is the adjunction between ⊗a and a∗⊗ on A. These isomorphisms are
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all natural, so will combine to an equivalence between DeEnrich(K)
←−−−−−−−−−−

and K, as

long as we can show that they lift to morphisms in Z(A). To see this, observe
that the half-braidings on DeEnrich(K)

←−−−−−−−−−−
(k, k′) are both defined in terms of the

braiding of k with objects in A.



Chapter 6

(De)-Equivariantisation and
the Reduced Tensor
Product

In this chapter, we will define the reduced tensor product of braided fusion
categories over a symmetric fusion category. To examine its properties, such as
what the invertible objects for this product are, it will be useful to examine how
the equivalences between BFC/A, Z(A)-XBF and G-XBF (or (G,ω)-XBF)
interact. We will show that the composite

C 7→ DeEnrich(Fix(C)),

corresponds to equivariantisation [DGNO10], whereas

C 7→ C←−
corresponds to de-equivariantisation [DGNO10]. After having set up the re-
duced tensor product, we take a look at its properties and collect directions for
future work.

6.1 (De-)Equivariantisation

In this section we discuss the relation between the constructions done in the
previous Chapters 4.2 and 5, and (de-)equivariantisiation. After this, we define
the reduced tensor product.

6.1.1 (De-)Equivariantisation and Z(A)-Crossed Categories

In this section, we will focus on the case where the symmetric subcategory
A ∼= Rep(G) is Tannakian.

130
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(De-)Equivariantisation as 2-Functors

De-equivariantisation and equivariantisation define a pair of mutually inverse
2-functors:

Theorem 6.1 ([DGNO10]). There is an equivalence of 2-categories:

De−Eq : BFC/A ←→ G-XBF : Eq,

here BFC/A is as in Definition 5.36, G-XBF is defined in Definition 4.34, and
Eq is the equivariantisation functor from Definition 6.3. De-equivariantisation
De−Eq is defined in [DGNO10].

Remark 6.2. While we will recall the definition of equivariantisation in Defini-
tion 6.3 below, we will not need the definition of de-equivariantisation, we just
need to know it is the inverse to Eq.

Relation to Z(A)-Crossed Braided Categories

We will prove that the following diagram of 2-functors commutes:

Z(A)-XBF

BFC/A G-XBF.

DeEnrich(−)

(−)
(−)
←−−

De−Eq

Eq

Fix

This splits into two parts. First we will show that the diagram commutes for
the left-pointing arrows. From this, we will deduce that the diagram for the
right-pointing arrows also commutes.

Factorising Equivariantisation

We will now show that the composite of Fix with DeEnrich(−) is the equiv-
ariantisation 2-functor Eq.

We first recall the definition of Eq.

Definition 6.3 ([Müg10]). Let C be a G-crossed braided fusion category. Then
the equivariantisation (or homotopy fixed point category) is the braided fusion
category Eq(C) with objects pairs (c, u), where u = {ug}g∈G is a set of isomor-
phisms ug : cg → c, satisfying ug(uh)g = ugh.

The hom-spaces are given by:

Eq(C)((c, u), (c′, u′)) = C(c, c′)G,

where the superscript G denotes taking the invariants for the G-action on C(c, c′)
given by:

C(c, c′) (−)g−−−→ C(cg, (c′)g)
(ug)∗,(u′g)−1

∗−−−−−−−−→ C(c, c′).
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The tensor product and braiding are inherited from C. For F a functor of
G-crossed braided categories, Eq(F ) is defined by taking pairs (c, u) to their
image under F . As functors of G-crossed braided categories intertwine the G-
action, this extends Eq(F ) to a functor. We similarly define Eq on natural
transformations.

This definition is similar to Definition 4.52. In fact, one has:

Theorem 6.4. The composite of 2-functors

G-XBF
Fix−−→ Z(A)-XBF

DeEnrich(−)−−−−−−−−−→ BFC/A

is equal to Eq.

Proof. We will only provide a proof of this statement on objects of the 2-
categories. The proof for 1-morphisms and 2-morphisms proceeds analogously.

Let C be aG-crossed braided fusion category. We want to show that DeEnrich(Fix(C))
is equal to Eq(C). We observe that, by definition, their objects are equal.

Furthermore, theG-action on theG-equivariant vector bundle Fix(C)((c, u), (c′, u′)),
which has underlying vector space C(c, c′), is the G-action with respect to which
we take G-invariants in Definition 6.3.

We therefore need to show that DeEnrich(−) takes G-invariants on hom-
objects. Recall that (−) is the operation of applying the forgetful functor
Z(A) → A to hom-objects. This will take Fix(C)((c, u), (c′, u′)) to the G-
representation with underlying vector space C(c, c′) and G-action from Defini-
tion 6.3. De-enriching is then applying A(IA,−) to hom-objects, this indeed
picks out the G-invariants, as IA is the trivial representation.

Factorising De-Equivariantisation

Since we have shown that the left-pointing arrows in the diagram in 6.1.1 form a
commutative diagram, and all the pairs of arrows are mutual inverses, we have:

Corollary 6.5. The composite of 2-functors

BFC/A
(−)
←−−−−→ Z(A)-XBF

(−)−−→ G-XBF

is equivalent to de-equivariantisation.

6.2 Reduced Tensor Product

In this section we discuss the reduced tensor product. We first discuss its defi-
nition and some of its basic properties, and then move on to some applications.
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6.2.1 Definition and Properties of the Reduced Tensor
Product

Definition of the Reduced Tensor Product

Definition 6.6. The reduced tensor product
A
�
red

on the category BFC/A (see

Definition 5.36) is defined to be the composite:

BFC/A×BFC/A Z(A)-XBF×Z(A)-XBF

Z(A)-XBF BFC/A,

(−)
←−−
×(−)
←−−

�
s

DeEnrich(−)

where �
s

was defined in Definition 4.7. This makes BFC/A into a symmetric

monoidal 2-category.

As outlined in the Introduction, Section 1.2.1, we want this product to be a
braided fusion category containing A, and to be computable in terms of just
the tensor structure and braiding of C and D. This is true by construction. The
last requirement is that the unit is Z(A).

The Unit for the Reduced Tensor Product

Proposition 6.7. Let C ∈ BFC/A. Then we have an equivalence

Z(A)
A
�
red
C ∼= C.

Proof. Since DeEnrich(−) and (−)
←−

are mutually inverse, this comes down to

showing that Z(A)
←−−−

is the unit for �
s

. To do this, observe that the unit for �
s

is

the free Z(A)s-enriched and tensored category on the category with one object
and Is as this object’s endomorphism-object, and that Z(A)

←−−−
is this category.

6.2.2 Basic Properties of the Reduced Tensor Product

Reduced Tensor Product and the Commutant of A
It is interesting to examine what the reduced tensor product becomes on the
commutant (Definition 5.23) ofA in C. When taking the reduced tensor product,
this commutant behaves nicely. We will use the following bit of notation:

Notation 6.8. Let C and D be braided fusion categories containing A. The
symbol �

A
, with slight abuse of notation, denotes

C�
A
D = DeEnrich( C←−�

A
D←−),
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where the use of �
A

on the right hand side denotes the A-product introduced in

Definition A.17.

Proposition 6.9. Let C,D ∈ BFC/A. Then the commutant of A in C
A
�
red
D

satisfies:

Z2(A, C
A
�
red
D) ∼= Z2(A, C)�

A
Z2(A,D).

Proof. Using Proposition 5.24, this follows directly from Proposition 4.25.

Examples

To give the reader some intuition for the reduced tensor product, we compute
some examples.

Example 6.10. Let C be a braided fusion category containing a symmetric
fusion category A. Then the reduced tensor product over A of C with A is
given by:

C
A
�
red
A ∼= Z2(A, C)�

A
A ∼= Z2(A, C).

To see this, we observe that the neutral subcategory of A enriched over itself is
all of A←−. Now apply Proposition 4.25 to get:

C
A
�
red
A ∼= DeEnrich C←−A�

s
A←−
∼= DeEnrich(Z2(A, C)←−−−−−−�

A
A←−) ∼= Z2(A, C).

Here, we have used Corollary 5.25 and that A←− is the unit for �
A

.

Example 6.11. Let C and D be braided fusion categories containing A, and
assume that D = Z2(A,D). Then:

C
A
�
red
D ∼= Z2(A, C)�

A
D.

The assumption on D means that we have D←−A = D←−, by Proposition 5.24. Using

Proposition 4.25 and Corollary 5.25, we get:

C
A
�
red
D ∼= DeEnrich C←−A�

s
D←−
∼= DeEnrich(Z2(A, C)←−−−−−−�

A
C←−) ∼= Z2(A, C)�

A
D.

Example 6.12. Let C and D be braided fusion categories containing A, and
assume that C = Z2(A, C) and that D = Z2(A,D). Then:

C
A
�
red
D ∼= C�

A
D.
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The assumption on C and D means that we have C←−A = C←− and D←−A = D←−, by

Proposition 5.24. Using Proposition 4.25 and Corollary 5.25, we get:

C
A
�
red
D ∼= DeEnrich C←−�

s
D←−

∼= DeEnrich C←−�
A
D←−

∼= C�
A
D.

This in particular means that in this case computing the reduced tensor product
does not require enriching over the Drinfeld centre.

6.3 Applications of the Reduced Tensor Prod-
uct

6.3.1 Invertible Objects

Invertible Objects and Group Cohomology

We will now discuss the invertible objects for
A
�
red

in the Tannakian case. The

super-Tannakian case will be the subject of future work. We will make use of the
classification of invertible G-crossed modular categories due to Turaev [Müg10].
This classification says that the group of invertible G-crossed modular categories
is isomorphic to H3(G,U(1)). The unit is given by De−Eq(Z(A)), where A =
Rep(G), and the isomorphism takes α ∈ H3(G,U(1)) to De−Eq(Z(VectαG)),
the Drinfeld centre of the category of G-graded vector spaces with associator
given by α. Because the equivalences in the diagram in Section 6.1.1 have either
been shown to be symmetric monoidal or are symmetric monoidal by definition,
this gives:

Proposition 6.13. Let A = Rep(G). The group of invertible objects in BFC/A
for

A
�
red

is isomorphic to H3(G,U(1)), with isomorphism given by α 7→ Z(VectαG).

The author would be interested in finding a description of this group without
reference to Tannaka duality.

6.3.2 Modular Categories

The Reduced Tensor Product of Modular Categories

To compare with known results, we have to examine what the reduced tensor
product of two modular categories containing A is. For simplicity, we will
assume A to be Tannakian. We will examine the super-case in future work. We
will use the following:
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Definition 6.14. A G-crossed braided fusion category M is called modular if
Me is a modular fusion category, and Mg is non-trivial for all g ∈ G.

The (de)-equivariantisation procedures take modular to modular.

Theorem 6.15 ([Müg10]). If M⊃ Rep(G) is a modular tensor category, then
De−Eq(M) is a G-crossed modular category. Conversely, Eq(N ) is a modular
tensor category if N is a G-crossed modular category.

Because the Deligne tensor product tensors modular categories to modular
categories, the degree-wise tensor product of G-crossed modular categories is
again G-crossed modular. This implies:

Proposition 6.16. Let C and D be modular tensor categories containing a

Tannakian subcategory A. Then C
A
�
red
D is a modular tensor category.

Minimal Modular Extensions

We will now compare the torsor structure for minimal modular extensions found
in [LKW17b] with the reduced tensor product. Recall that a minimal modular
extension is defined as follows.

Definition 6.17. Let C be a braided fusion category with Müger centre (Defi-
nition 5.23) A. Then a minimal modular extension M of C is a modular tensor
category such that

Z2(C,M) = A, (6.1)

where Z2(C,M) denotes the commutant of C in M, see Definition 5.23. The
set of minimal modular extensions of C will be denoted by MME(C).

It was conjectured in [Müg03b] that MME(C) is always non-empty. This
conjecture was shown to be false in [Dria].

By the double commutant theorem [Müg03b, Theorem 3.2], the condition in
Equation 6.1 above is equivalent to

Z2(A,M) = C.

If M is a minimal modular extension of C, we have

M←−A = C←−.

In particular, when C = A, we have

M←−A = AZ ,

where AZ = A←− is the unit for �
c

, see Lemma 4.12. Combining Propositions 6.9

and 6.16 now gives:
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Corollary 6.18. Let C and D be braided fusion categories such that Z2(C) ∼=
Z2(D) = A. Then the reduced tensor product on BFC/A defines a pairing:

−
A
�
red
− : MME(C)×MME(D)→ MME(C�

A
D).

In [LKW17a], it was shown that MME(C), if non-empty, is a torsor for
MME(A), and that MME(A) ∼= H3(G,U(1)) if A = Rep(G). As A is the
unit for �

A
, our pairing in particular gives a pairing:

−
A
�
red
− : MME(A)×MME(A)→ MME(A),

which by Proposition 6.13 makes MME(A) into a group isomorphic toH3(G,U(1)).
Furthermore, the pairing

−
A
�
red
− : MME(A)×MME(C)→ MME(C),

gives an action of this group on MME(C).



Appendix A

Preliminaries

A.1 Enriched Category Theory

In this section we review some elements of enriched category theory. The con-
tents of this section are widely known in the mathematical community.

A.1.1 Enriched tensored categories

Basics of enriched and tensored categories

Fix a spherical symmetric fusion category A with unit object I throughout. We
assume the reader is familiar with the basic definition of a category enriched in
A. This section will deal with categories that are not only enriched, but also
tensored over A.

Notation A.1. The hom-objects in an A-enriched category C between c, c′ ∈ C
will be denoted by C(c, c′). We will write f : c →a c

′ for f : a → C(c, c′). If
a = I, we will omit it from the notation. Furthermore, we will write C(c, c′) for
A(I, C(c, c′)).

We remind the reader of the following definition.

Definition A.2. Let F,G : C → D be functors of A-enriched categories. An
enriched natural transformation from F to G is for each object c ∈ C a morphism
ηc : F (c)→I G(c), that makes the following diagram commute for any f : c→a

c′ ∈ C:

F (c) G(c)

F (c′) G(c′).

ηc

F (f)
a

G(f)
a

ηc′

138
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Definition A.3. Let C be a category enriched in A. Then C is called tensored
over A if there exists, for every c, c′ ∈ C and a ∈ A an object a · c together with
a functorial isomorphism

A (a, C(c, c′)) ∼= C(a · c, c′). (A.1)

Definition A.3 allows us to write, denoting by O(A) a set of representatives
for the isomorphism classes of simple objects in A:

C(c, c′) ∼=
⊕

a∈O(A)

C(ac, c′)a. (A.2)

This means we can view f : c→a c
′ as a morphism f̃ : ac→ c′, and the composite

of f : c→a c
′ and g : c′ →a′ c

′′ is given by

g̃ ◦
(

ida′ · f̃
)

: a′ac→ c′′.

Definition A.4. The images of morphisms under the isomorphism (A.1) are
called mates. For f : c→a c

′ we will write f̄ : ac→ c′ for its mate, and the mate
of g : ac→ c′ will be denoted by g : c→a c

′.

Remark A.5. If C is enriched over A, its category of enriched endofunctors
End(C) is a tensor category, with the monoidal structure coming from composi-
tion. The assignment a 7→ a ·− extends to a functor A → End(C). This functor
is in fact monoidal, cf. Lemma A.10.

Categories enriched and tensored over A form a 2-category, where we do have
to take care functors between them are compatible with the tensor structure:

Definition A.6. The 2-category of A-categories ALinCat is the 2-category
where

• objects are categories enriched in and tensored over A,

• morphisms A-enriched functors F : C → C′ equipped with a natural iso-
morphism

F (a · c) µa,c−−−→∼= a · F (c),

monoidal in a, such that the diagrams

C(a · c, c′) A(a, C(c, c′))

C′(F (ac), F (c′)) C′(a · F (c), F (c′)) A(a, C′(c, c′)),

∼=

F F

µ ∼=

commute for all a ∈ A and c, c′ ∈ C,

• and 2-morphisms enriched natural transformations η : F ⇒ G that make
the diagrams
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F (ac) G(ac)

a · F (c) a ·G(c),

ηac

∼= ∼=
ida·ηc

commute for all a ∈ A and c ∈ C.

Remark A.7. Definition A.6 is the most restrictive of the possible choices for
a definition of ALinCat. We could also have allowed that there is an auto-
equivalence of A associated to every morphism between A-enriched and ten-
sored categories, and that each 2-morphism comes with a symmetric monoidal
transformation between these auto-equivalences. However, Definition A.6 corre-
sponds to the kind of enriched and tensored categories one obtains from module
categories over A.

Definition A.8. The internal hom between two objects a, a′ ∈ A is the rep-
resenting object A(a, a′) for the functor a′′ 7→ A(a′′a, a′). These hom objects
make A into a category enriched and tensored over itself, i.e. a closed monoidal
category.

Lemma A.9. There is a canonical isomorphism

A(I, a) ∼= a. (A.3)

for all objects a ∈ A.

Proof. Consider that
A(a′,A(I, a)) ∼= A(a′, a),

so A(I, a) and a are canonically isomorphic under the Yoneda embedding.

The tensor structure of C over A induces an enriched natural isomorphism η
with components

ηa,c,c′ : A(a, C(c, c′))→ C(ac, c′). (A.4)

To see this, observe that, given the natural transformation from (A.1), the
definition of the enriched hom for A gives

A(a′,A(a, C(c, c′))) ∼= A(a′a, C(c, c′)) (A.5)
∼= A(a′, C(ac, c′)) (A.6)

where the second line uses the isomorphism from (A.1). The preimage of this
isomorphism under the Yoneda embedding is the desired isomorphism.

Lemma A.10. Suppose C is tensored over A. Then the functor A → End(C)
taking a to a · − is a tensor functor.
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Proof. We only prove that there exist isomorphisms a · (a′ · c) ∼= aa′ · c and omit
checking the triangle and pentagon equations. We observe that

C(a · (a′ · c), c′) ∼= A(a, C(a′c, c′))
∼= A(a,A(a′, C(c, c′)))
∼= A(aa′, C(c, c′))
∼= C(aa′c, c′),

(A.7)

for all c′ ∈ C.

Definition A.11. We let

ev: C(c, c′) · c→ c′. (A.8)

be the unit of the adjunction between C(c,−) : C → A and − · c : A → C from
(A.1).

Remark A.12. The evaluation morphism allows us to rewrite the defining
diagram for an enriched natural transformation (Definition A.2) as follows:

C(c, c′) · F (c) C(c, c′) ·G(c)

C(Fc, Fc′) · F (c) C(c, c′) ·G(c)

F (c′) G(c′).

ηc

F ·id G·id

ev ev

ηc

Lemma A.13. There exists a canonical isomorphism

aC(c, c′)→ C(c, ac′).
Proof. We construct an isomorphism between the images of aC(c, c′) and C(c, ac′)
under the Yoneda embedding:

A(a′, aC(c, c′)) ∼= A(a∗a′, C(c, c′))
∼= C(a∗a′c, c′)
∼= C(a′c, ac′)
∼= A(a′, C(c, ac′)).

(A.9)

Tensor product of enriched tensored categories

Definition A.14. The enriched cartesian product C�̂
A
D of two A-enriched cat-

egories C and D is the A-enriched category whose objects are symbols c�
A
d with

c ∈ C and d ∈ D, and whose hom-objects are given by:

C�̂
A
D (c� d, c′ � d′) : = C(c, c′)⊗D(d, d′), (A.10)



APPENDIX A. PRELIMINARIES 142

where ⊗ is the tensor product in A. Composition is given by first applying the
braiding in A and then the compositions in C and D.

Definition A.14 has an undesirable feature: if C and D from the above def-
inition are semi-simple and idempotent complete, C�̂

A
D in general will not be.

Another, more prosaic, problem is that this notion of tensor product is not
compatible with direct sums, we will fix this momentarily.

Definition A.15. The Cauchy completion of a A-enriched category C is the
category with objects n-tuples of objects from C together with a matrix of
morphisms from C that is idempotent as morphism from the n-tuple to itself.
Morphisms are matrices of morphisms from C that commute with the idempo-
tents.

Remark A.16. Considering n-tuples of objects ensures compatibility with di-
rect sums, picking idempotents ensures the category is idempotent complete.
Note that C includes into its Cauchy completion. Any functor of A-enriched
categories induces a functor between the Cauchy completions, and the Cauchy
completion of any category tensored over A is also tensored over A.

Definition A.17. The A-product C�
A
D of two A-enriched categories C and D

is the Cauchy completion of C�̂
A
D.

Proposition A.18. If C,D ∈ ALinCat, then C�
A
D is tensored over A with

tensoring,
a · (c� d) ∼= (a · c) � d ∼= c� (a · d), (A.11)

and we have isomorphisms:

(a · c) � d ∼= c� (a · d).

Proof. For the first part, recall, from Definition A.3, that it is enough to show
that c� (a · d) satisfies:

A(a, C�
A
D(c� d, c′ � d′)) ∼= C�

A
D(c� (ad), c′ � d′). (A.12)

As a · (c� d) is characterised by this equation, this will both establish existence
of the tensor structure and a · (c� d) ∼= c� (a · d).

Substituting in the definition of the hom-objects in the A-product, we see we
are trying to find

A(a, C(c, c′)⊗D(d, d′)) ∼= C(c, c′)⊗D(ad, d′).

Applying Lemma A.13 to A viewed as a category tensored over itself, we see
that the left hand side reads:

C(c, c′) · A(a,D(d, d′)) ∼= C(c, c′)⊗D(ad, d′), (A.13)
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where the last isomorphism is (A.4). This gives us the desired isomorphism
(A.12).

To establish the remaining assertion, observe that besides (A.13) we also have,
after applying the symmetry in A

A(a, C(c, c′)⊗D(d, d′)) ∼= D(d, d′) · A(a, C(c, c′))
∼= C(ac, c′)⊗D(d, d′)

∼= C�̂
A
D((ac)�

A
d, c′�

A
d′),

where we used the symmetry in A again the penultimate line.

The A-product is symmetric in the sense that:

Definition A.19. Let C,D ∈ ALinCat, then the switch functor S : C�
A
D →

D�
A
C is defined by

c�
A
d 7→ d�

A
c

at the level of objects and

C(c, c′)⊗D(d, d′)
s→D(d, d′)⊗ C(c, c′),

where s is the symmetry in A.

As the monoidal structure and the symmetry in A satisfy the appropriate
coherence equations, the A-product and the switch functor will strictly satisfy
the coherence equations for a symmetric monoidal structure on the 2-category
of categories enriched in and tensored over A. That is, (ALinCat,�

A
, S) is a

(strict) symmetric monoidal 2-category.
Given this A-product, we can define:

Definition A.20. Let C be an A-enriched category. Then a A-tensor structure
is a pair of functors:

⊗ : C�
A
C → C, I : A → C,

equipped with associators and unitors satisfying the usual coherence conditions.

Proposition A.21. The unit for the enriched cartesian product of enriched
and tensored categories is A enriched over itself, denoted by A.

Change of basis

Given monoidal categories C and D, and a monoidal functor F : C → D, one
gets a 2-functor (F )∗ from the 2-category of categories enriched over C to that of
those enriched over D, known as the “change of basis” functor. For a treatment
of change of basis along monoidal functors, see [Cru08]. The proves from this
reference translate straightforwardly to the lax monoidal case:
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Definition A.22. A lax monoidal functor from a monoidal category C to a
monoidal category D is a functor F : C → D, together with a natural transfor-
mation:

µ : F (−)⊗ F (−)⇒ F (−⊗−),

and a morphism
µ0 : ID → F (IC),

that satisfy the compatibility conditions with the associators αC and αD:

F (c)(F (c′)F (c′′)) F (c)F (c′c′′)

(F (c)F (c′))F (c′′) F (c(c′c′′))

F ((cc′)c′′) ,

µ

αD µ

µ
F (αC)

for all c, c′, c′′ ∈ C, and compatibility with the unitors:

IDF (c) F (IC)F (c)

F (c) F (ICc),

µ0

λD µI,c

F (λC)

and a similar condition for the right unitors.

In this section, we will focus on this lax case. We will make use of the following
well-known results.

Proposition A.23. Let (F : C → D, µ) be a lax monoidal functor, and let M
be a C-enriched category. Then the category FM obtained from M by applying
F to the hom-objects is a D-enriched category, with composition given by the
image of the composition in M under F and identity morphisms the image of
the identity morphisms under F precomposed with µ0.

We will omit the proof of this statement, it is essentially the same as the proof
of Lemma 4.9. It turns out that a change of basis is a 2-functor:

Proposition A.24. Let (F : C → D, µ) be a lax monoidal functor, then the
assignment M 7→ FM extends to a 2-functor from the 2-category of C-enriched
categories to the 2-category of D-enriched categories.

If the monoidal categories involved are braided, we can additionally ask for
the lax monoidal functor to be braided:

Definition A.25. Let (F : C → D, µ) be a lax monoidal functor between
braided (or symmetric) monoidal categories with braidings (or symmetries) βC

and βD, respectively. Then F is called braided (or symmetric) if the following
diagram
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F (c)F (c′) F (c′)F (c)

F (cc′) F (c′c)

βD

µ µ

F (βC)

commutes for all c, c′ ∈ C.

As discussed in the previous section, if the enriching category is symmetric
monoidal, there is a notion of enriched Cartesian product (Definition A.14),
and hence of enriched monoidal object. Change of basis along a symmetric lax
monoidal functor preserves these monoidal objects. We give a proof as we will
need a slight variation of this argument in this thesis. This fact is a consequence
of the following.

Lemma A.26. Let M and N be C-enriched categories, where (C, sC) is a sym-
metric monoidal category, and let F : C → D be a symmetric lax monoidal
functor, and denote the symmetry in D by sD. Then the assignment:

M : FM�
D
FN → F (M�

C
N ),

which is the idenity on objects and µ on hom-objects, is a D-enriched functor.

Proof. We need to check that M preserves composition, this translates into
checking that the outside of following diagram commutes:

FMFNFMFN F (MN )F (MN )

FMFMFNFN F (MNMN )

F (MM)F (NN ) F (MMNN )

F (M)F (N ) F (MN ),

µµ

sD µ

µµ F (sD)

µ

F (◦)F (◦) F (◦◦)
µ

where we have suppressed the objects in for example FM(m,m′) from the
notation for readability. The bottom square commutes by naturality of µ, for
the top square, we observe that the compatibility of µ with the associators
(Definition A.22) allows us to rewrite this as:

FMFNFMFN FMF (NM)FN F (MNMN )

FMFMFNFN FMF (MN )FN F (MMNN ),

µ

sD F (sC)

µ◦µ

F (sC)

µ µ◦µ

where the rightmost square commutes by naturality of µ, and the leftmost square
is exactly the one from Defintion A.25.
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We observe that when F is strong monoidal (so µ is an isomorphism), change
of basis along F takes the C-enriched Cartesian product to the D-enriched Carte-
sian product.

Proposition A.27. Let F : C → D and M be as in the previous lemma. As-
sume further that C and D are symmetric, and that F preserves the symmetry.
Then, if M is C-monoidal with monoidal structure ⊗, FM is D monoidal, with
monoidal structure given by the composite

FM�
D
FM M−→ F (M�

C
M)

F (⊗)−−−→ FM.

Proof. The monoidal structure is clearly functorial, as it is a composite of D-
enriched functors. As µ respects the associators for C, F will take the associators
for M to associators for FM, and similar for the unitors.

This extends to:

Proposition A.28. Let F : C → D be a symmetric lax monoidal functor. Then
the assignment M 7→ FM extends to a symmetric monoidal 2-functor from
the 2-category of C-enriched categories, with enriched cartesian product, to the
2-category of D-enriched categories, with enriched cartesian product.

In fact for a given C,D monoidal categories and C-enriched category M,
“change of basis” (−)∗ is itself a functor from the functor category MonCatL(C,D)
of lax monoidal functors from C to D and their natural transformations to the
category of D-enriched categories. We remind the reader of the following defi-
nition:

Definition A.29. Let (F, µ) and (G, ν) be lax monoidal functors between C
and D, then a lax monoidal natural transformation σ : F ⇒ G is a natural
transformation such that for all c, c′ ∈ C the following diagram commutes:

F (c)F (c′) F (cc′)

G(c)G(c′) G(cc′).

µc,c′

σcσc′ σcc′

νc,c′

Proposition A.30. Let F,G : C → D be lax monoidal functors and M be C-
enriched, and let σ : F ⇒ G be a lax monoidal natural transformation. Then,
for every C-enriched category M, we have a D-enriched functor

Σ: FM→ GM,

given by the identity on objects and σ on the hom-objects. Furthermore, the
assignment σ 7→ Σ preserves composition of natural transformations.

As being tensored is a property of the enrichment, the following is automatic.

Proposition A.31. Let M be enriched and tensored over a monoidal category
C, and let F : C → D be a lax monoidal functor. Then FM is enriched and
tensored over D.
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A.2 Tensor Categories

A.2.1 Symmetric Fusion Categories

Tannaka Duality and Finite Super-Groups

A famous result by Deligne [Del90, Del02] states that every symmetric fusion
category is the representation category of a (super-)group. Before we can state
the Theorem, we need some definitions.

Definition A.32. Let C be a braided fusion category. A braided functor C →
Vect (or C → sVect) is called a (super-)fibre functor. A braided fusion category
C is called (super-)Tannakian if C admits a (super-)fibre functor.

Before we state Deligne’s Theorem, we recall some basic facts about super-
groups1:

Definition A.33. A super-group (G,ω) is a group G together with a choice of
central element of order two ω. A representation of a super-group is a super-
vector space V and a homomorphism G→ AutsVect(V ) that takes the element
ω to the grading involution. The category of such representations Rep(G,ω)
is symmetric, with symmetry inherited from sVect. Observe that, as ω is
central, an irreducible representation is homogeneous, and Rep(G,ω) splits (as
a linear category) as the sum of the subcategories of even representations and
odd representations.

Lemma A.34. The data of a supergroup (G,ω) is equivalent to the data of the
quotient group G = G/ 〈ω〉 together with a cocycle ω̄ ∈ H2(G,Z2).

Proof. The quotient short exact sequence for G is a central extension of G by
Z2, and such central extensions are classified by 2-cocycles with coefficients in
Z2.

Recall that, as a set, G = G× 〈ω〉, with multiplication given by

(ḡ, ωn) · (h̄, ωm) = (ḡh̄, ωn+m+ω̄(g,h)).

Theorem A.35 ([Del90, Del02]). Let A be a symmetric fusion category. Then
A admits either a fibre functor or a super-fibre functor. Furthermore, the cate-
gory A is equivalent as symmetric fusion category to the category of represen-
tations of the (super)-group of monoidal natural automorphisms of the (super)-
fibre functor (where the grading involution is taken as the central order 2 element
of the supergroup).

A.2.2 The Drinfeld Centre

In this section we will remind the reader of some well-known facts about the
Drinfeld centre.

1This definition of super-groups is different from viewing super-groups as group objects in
the category of super-manifolds. The definition here is the one used in the context of fusion
categories, see for example [BGH+17].
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The Drinfeld Centre of a Monoidal Category

We recall the definition of the Drinfeld centre of a monoidal category for con-
venience.

Definition A.36. Let M be a monoidal category. The Drinfeld centre Z(M)
of M is the braided monoidal category with objects pairs (m,β) where m is an
object of M and β is a natural transformation

β : −⊗m⇒ m⊗−.
The β are further required to satisfy

βnn′ = (βn ⊗ idn′) ◦ (idn ⊗ βn′), (A.14)

for all n, n′ ∈M.
The morphisms in Z(M) are those morphisms in M that commute with the

half-braidings in the obvious way. The tensor product is induced from the one
on M and the braiding is the one specified by the half-braidings.

The Drinfeld centre comes with a forgetful functor Φ: Z(A) → A, which
forgets the half-braiding. This functor is monoidal, but not braided.

It is well known ([ENO05]) that the centre of a fusion category is again fu-
sion. Furthermore, the centre of a spherical fusion category is a modular tensor
category.

If M is braided, there is an obvious inclusion functor

M ↪→ Z(M), (A.15)

which takes an object m ∈ M to (m,βm,−), where βm,− denotes the natural
isomorphism between m⊗− and −⊗m given by the braiding in M.

A.2.3 The Drinfeld Centre of the Representation Cate-
gory of a Finite Group

As discussed in Section A.2.1, every symmetric fusion category A is a represen-
tation category Rep(G) of a finite (super-)group. It turns out that the Drinfeld
centre of a representation category of a finite group has the interesting feature
that it is equivalent (as braided monoidal category) to the Drinfeld centre of
the category of G-graded vector spaces, as we discuss in this section. We will
first discuss the case of G being an ordinary finite group, then we move on to
the supergroup case.

Tannakian Case

It is well-known ([BK01, Chapter 3.2]) that when A = Rep(G), there is an
equivalence:

E : Z(A)
∼=−→ VectG[G], (A.16)

between the Drinfeld centre and the category of equivariant vector bundles over
G. This latter category is defined as follows:
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Definition A.37. A G-equivariant vector bundle on G denoted by V is a col-
lection of vector spaces Vg for g ∈ G, together with for each h ∈ G isomorphisms

ρh : Vg → Vhgh−1 ,

such that ρh′ρh = ρh′h. The vector space Vg will be called the fibre over g, and
the isomorphisms ρ the action data.

Definition A.38. The category of G-equivariant bundles on G, VectG[G], is
the category with objects G-equivariant bundles over G, and morphisms fibre-
wise linear maps that commute with the ρh.

Definition A.39. The convolution tensor product V ⊗W of two equivariant
bundles V,W over G is the bundle with fibres

(V ⊗W )g =
⊕

g1g2=g

Vg1 ⊗Wg2 ,

and action data ρg = ⊕g1g2=gρ
V
g1 ⊗ ρWg2 .

Furthermore, there is a braiding:

Definition A.40. The braiding isomorphism

βV,W : V ⊗W →W ⊗ V

for V,W ∈ VectG[G], is given by using for each g1g2 = g

Vg1 ⊗Wg2

s◦(id⊗ρg1 )−−−−−−−→Wg1g2g
−1
1
⊗ Vg1 ,

where s is the switch map of vector spaces, and summing this to a fibrewise
map.

This makes VectG[G] into a braided monoidal category. It is in fact a modular
fusion category, with simples supported by conjugacy classes of G. Note that,
as the neutral element e is stabilised under conjugation by the whole group,
the subcategory of vector bundles supported by the conjugacy class [e] is the
representation category of G. The inclusion functor from Equation (A.15) is in
this model for the Drinfeld centre the functor that views a representation of G
as a vector bundle over G supported by [e].

Definition A.41. The forgetful functor from VectG[G] to Rep(G) is given by

Φ: VectG[G]→Rep(G)

V = {Vg} 7→
⊕
g∈G

Vg,

with G-action given by the action data.
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Using the forgetful functor, the equivalence between Z(Rep(G)) and VectG[G]
is in one direction given by taking V = {Vg} and mapping it to (Φ(V ), βV,−).

Definition A.42. Let G be a group. Then the category of G-graded vector
spaces Vect[G] is the linear category with simple objects C of homogeneous
degree g for g ∈ G, and fusion rules given by multiplication in the group.

The following is a straightforward computation:

Proposition A.43. Let G be a finite group. Then the Drinfeld centre of
Vect[G] is VectG[G].

Super-Tannakian Case

We will now discuss the Drinfeld centre of the representation category of a finite
supergroup (G,ω). We will denote the underlying finite group by G. We start
with the following observation:

Lemma A.44. For any finite supergroup (G,ω), there is an equivalence

Z(Rep(G,ω)) ∼= Z(Rep(G))

of braided monoidal categories.

Proof. This follows directly from the fact that Rep(G,ω) and Rep(G) are equiv-
alent as monoidal categories.

This means that the results from the previous section also apply to the super-
Tannakian case, except for the following. Odd representations in Rep(G,ω)
braid along minus the identity with each other, so the inclusion functor Rep(G,ω) ↪→
Z(Rep(G,ω)) cannot be viewing these representation as bundles supported by
[e], these bundles braid trivially with each other. Instead, observe that, ω being
central, the subcategory of bundles supported by [ω] is also the representation
category of G (as linear category), but these bundles braid among each other
according to the action of ω (see Definition A.40). In particular, odd represen-
tations will braid along minus the identity. In summary:

Proposition A.45. Under the equivalence of Z(Rep(G,ω)) with VectG[G], the
inclusion functor

Rep(G,ω) ↪→ VectG[G]

from Equation (A.15) is given by viewing even and odd representations as vector
bundles supported by [e] and [ω], respectively.

The forgetful functor to Rep(G,ω) also differs compared to Definition A.41,
we need to assign a parity to the images. To do this, it is helpful to observe the
following:

Lemma A.46. Let c be a simple object of VectG[G], then ω acts by either idV
or −idV .
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Proof. The simple objects in VectG[G] are supported by conjugacy classes. As
ω is central, it has to act by the same linear map on each fibre.

With this Lemma in hand, we can simply define:

Definition A.47. Let c be a simple object in VectG[G], then c is called even
(or odd) if ω acts as id (or −id).

Now, the forgetful functor is again the functor to Rep(G,ω) that takes the
direct sum of the fibres, where we additionally remember the parity of the simple
object it came from.
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insight and perseverance.

I owe Bruce Bartlett most of my knowledge about fusion categories, and his
willingness to listen to and comment on my ideas has helped me tremendously
throughout the years.

Nik Nikolov, my college advisor, has my gratitude for giving me the opportu-
nity to teach at Univ, and for his support.

Marina Logares has brightened my time in Oxford, both socially and mathe-
matically. I especially owe her for introducing me to her student Ángel González-
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