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Abstract

In this paper we give a mathematical formulation of the Riemann-
Hilbert problem. We then proceed to show how the Riemann-Hilbert
problem arises in the theory of integrable systems. To do this we formulate
our problem in terms of loop algebras and outline some of their basic
properties.

1 Introduction

In 1900, at the International Congress of Mathematicians, the famous math-
ematician David Hilbert put forth a list of what he percieved to be the most
important unsolved problems in mathematics as a challenge for the mathemati-
cians of the twentieth century to solve. Number twenty-one on this list was a
rudimentary form of what are now known as Riemann-Hilbert problems.

The problem was, given initial data in the form of a representation of the
fundamental group of the punctured Riemann-sphere, with the punctures lo-
cated at given poles, can you always find an N ×N linear system of differential
equations such that:

dΨ

dλ
= A(λ)Ψ(λ), (1)

with A(λ) being an N × N matrix function depending rationally on the pa-
rameter λ, with poles at the given points, and with Ψ(λ) generating the given
representation. Such a system is called a Fuchsian system. Incidentally, it was
found that, in general, such a system cannot be found [1]. There are, however,
conditions on the initial data that guarantee the existence of a Fuchsian.

This question already reminds us of problems we face in constucting inte-
grable models. There we start out from some analytic stucture and ask our-
selves whether this data represents an integrable system. The formulation of the
Riemann-Hilbert factorization problem we are interested in is slightly different
from the one above.

Because this problem is closely related to Riemann’s idea that any function is
completely determined by specifying its singularities and behaviour around these
singularities, it got the name Riemann-Hilbert problem. While mathematicians
strived to find a resolution of Hilbert’s twenty-first problem, which was finally
found to be a negative one by Bolibruch in 1989, the Riemann-Hilbert method
was developed. For an overview of these developements, see [1]. This method
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consists of reducing a problem to factorizing a given matrix-valued function
defined on a curve into a part analytic inside and a part analytic outside the
curve. These reductions to factorization problems also got the name Riemann-
Hilbert problems. The original Riemann-Hilbert problem can be formulated
in these terms and can thus be viewed as a special case of a Riemann-Hilbert
problem.

The Riemann-Hilbert problem appears in many branches of mathematical
physics. Apart from the application we will discuss here it has, for example,
been shown [3] that dimensional regularization and renormalization in quantum
field theory can be viewed as a Riemann-Hilbert problem. In the article [5]
an overview of applications related to special functions appearing in integrable
systems is given.

It should be noted that, even though all problems solved by following the
above scheme carry the common name Riemann-Hilbert problem, the methods
used for reducing these problems to a factorization problem are not described by
a general algorithm. The reduction itself can be a quite non-trivial procedure.

In this paper we will first give a proof of the theorem on Riemann-Hilbert
factorization that is relevant for our purposes. Then we briefly discuss loop
groups and loop algebras, since the factorization arises quite naturally in this
setting for integrable systems. Then we show how the factorization can be
used to solve equations in integrable sytems with a single pole Lax matrix, and
generalize this to the case of multiple poles.

2 Riemann-Hilbert factorization

In this section we will discuss the theorem on the particular form of the Riemann-
Hilbert problem we require. The theorem is best formulated on the one-point
compactification of the complex plane, the Riemann sphere, denoted C̄. (One
can visualize this by imagining a sphere resting with its south pole on the origin
of the plane, associating to each point on the plane the point of intersection
with the sphere of the line between the point and the north pole. The north
pole then represents the added point at infinity.) We will limit ourselves to the
existence part of the proof, since this provides some insight into the structure
of the construction.

Theorem 2.1. Let C be the unit circle in the Riemann sphere C̄, let g : C →
Mat(C̄, n) be a given analytic matrix-valued function on this circle, with det(g) 6=
0 on C. Let η be such that g has an analytic extension to the annulus {λ ∈
C̄ : 1 − η < |λ| < 1 + η}. Let U+ = {λ ∈ C̄ : |λ| < 1 + η} and U− =
{λ ∈ C̄ : |λ| > 1 − η}. Then there exist analytic g± : U± → GL(C̄, n) and
Λ(λ) = diag(λk1 , .., λki , ..λkn), with ki ∈ Z unique up to ordering, such that, on
the annulus U+ ∩ U−:

g(λ) = g−1− (λ)Λ(λ)g+(λ). (2)

Furthermore, these g± are unique if we require lim
λ→∞

g−(λ) = Id.

Proof. We start by constucting a suitable candidate for g+(λ). To do this we
consider the operator on matrix-valued continuous functions on C given by:

(Ff)(λ) = f(λ) +
1

2πi

∮
C

K(λ, λ′)

λ− λ′
f(λ′)dλ′, (3)
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where the kernel K(λ, λ′) is analytic on C and depends on g(λ):

K(λ, λ′) = g−1(λ)g(λ′)− 1. (4)

This is a so-called Fredholm operator, since it is the sum of an invertible and
a compact operator. One of the basic properties of Fredholm operators is (see
for example [4]) that its image is closed and has a finite dimensional comple-
ment. Since the matrices of polynomials are dense in the space of matrices of
continuous functions we can always find a matrix of polynomials P (λ), with
detP (λ) 6= 0 for large enough λ, such that g−1(λ)P (λ) is in the image of F .
This means we can always find a matrix-valued function f such that, for such
a P (λ):

(Ff)(λ) = g−1(λ)P (λ). (5)

We can extend this function analytically to the annulus U+ ∩ U−, since both g
and P have extensions, combining (3) and (5) we get:

f(λ) = g−1(λ)P (λ) +
1

2πi

∮
C

K(λ, λ′)

λ− λ′
f(λ′)dλ′. (6)

Any function analytic on an annulus has a Laurent series. This means we can
write f(λ) = f(λ)− + f+(λ), with f± analytic on U± and f−(∞) = 0. The
singular part can be extracted using a contour integral:

f−(λ) = − 1

2πi

∮
C

f(λ′)

λ′ − λ
dλ′. (7)

The regular part f+(λ) can now be obtained by simply substracting f−(λ) from
the expression for the analytic extension to the annulus:

f+(λ) = g−1(λ)P (λ) +
1

2πi

∮
C

g−1(λ)g(λ′)f(λ′)

λ− λ′
dλ′. (8)

Multiplying this from the left by g(λ) we get an equation of the form (2):

g(λ)f+(λ) = P (λ) +
1

2πi

∮
C

g(λ′)f(λ′)

λ− λ′
dλ′ ≡ f̃−, (9)

where we still need to find the exact expressions for g±(λ) and Λ(λ). To satisfy
the conditions in the theorem g±(λ) should have non-vanishing determinants
on their respective domains and g−(λ) should be made to tend to the identity
as λ tends to infinity. The analycity of g± can be derived from the analycity
of f+ and f−. By construction, f+(λ) is analytic on U+, but it can still have a
zero determinant at some points. The function f̃−(λ) is, also by construction,
analytic on U−, and behaves as P (λ) for large |λ|, since for such λ the integral
term is surpressed. So for large |λ| the determinant of f̃−(λ) is non-zero. This
means that det f̃−(λ) and det f+(λ) do not vanish identically and it is a basic
fact from complex analysis that therefore these functions have a finite number
of zeroes at finite distance.

We now proceed to remove these zeroes. Suppose f+(λ) has zero determinant
at λ0, and that this zero is simple. This implies that we can find a matrix M such
that f+(λ0)M has vanishing first column. Since the zero is simple, multiplying
from the right by diag(1/(λ− λ0), 1, . . . , 1) will remove it. Viewing degenerate
zeroes as products of simple zeroes we can iterate this procedure to remove all
zeroes from det f+(λ). To make sure (9) is still satisfied all multiplication from
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the right should of course also be performed on f̃−(λ). This, however, does not
spoil the analycity of f̃−(λ) on U−, the zeroes of det f+(λ) are all contained
in U+ − U−. Conversely, applying the same procedure to f̃−(λ) will keep the
analytic properties of f+(λ) intact. For large |λ| we can approximate

1

λ− λ0
=

1

λ

(
1 +O

(
λ0
λ

))
, (10)

and we get a matrix f−(λ) behaving at ∞ as:

f− = g−1− (λ)diag(λk1 , . . . , λkN ) det g−(λ) 6= 0 (11)

This is the defining equation for g−(λ). Finally, setting g+ equal to our modified
f+ and Λ(λ) = diag(λk1 , . . . , λkN ), we have obtained the factorization (2).

Example 2.1. This proof also yields an algorithm for determining the indices
ki for g(λ) = 1+ εh(λ), with ε sufficiently small. Up to linear order in ε we have
g−1(λ) = 1− εh(λ) +O(ε2), and K(λ, λ′) simplifies to:

K(λ, λ′) = ε(h(λ′)− h(λ)) +O(ε2). (12)

For ε small enough, this means that F is surjective, for any function f(λ) we
have that

f̃(λ) = f(λ)− 1

2πi

∮
C

K(λ, λ′)

λ− λ′
f(λ′)dλ′ (13)

satisfies (F f̃)(λ) = f(λ)+O(ε2). Because F is surjective, g−1(λ) is in its image
and we can pick P (λ) = 1. We then get for the analytic extension (6) of our
f(λ):

f(λ) = 1− ε
(
h(λ)− 1

2πi

∮
C

h(λ′)− h(λ)f(λ′)

λ− λ′

)
. (14)

So the polar parts are of order ε or smaller, and we can decompose f+(λ) =
1 +O(ε), and we get from (9) that f̃−(λ) = 1 +O(ε). So both f+(λ) and f̃−(λ)
have non-vanishing determinants and all ki vanish.

3 Loop algebras

To see how the Riemann-Hilbert problem arises naturally in integrable systems it
is convenient to view the Lax equation from the point of so-called loop algebras.
We will assume the reader is familiar with the basic concepts of Lie groups,
algebras and their duals, the adjoint action and its counterpart in the dual the
coadjoint action. For an explanation of these concepts we refer the reader to for
example the treatment in [2].

Definition 3.1. A loop group G over a Lie group G is the group of all analytic
G-valued functions on the interior of a loop C ⊂ C, with pointwise (in the
C-variable) multiplication.
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For clarity of exposition we will take C = S1 in what follows, and assume
G to be a matrix group. Expanding an element g(λ) ∈ G as a formal power
series, we see that g(λ) =

∑∞
r=0 grλ

r. As usual, the Lie algebra g of G is defined
as the tangent space to the identity element and consists of elements of the
form

∑∞
r=0Xrλ

r, with pointwise commutator. This Lie algebra is called a loop
algebra.

The real reason these loop algebras are of interest to us lies in the form the
elements of the dual take. For functions on a loop it is quite natural to define
an inner product by:

〈f, g〉 =
1

2πi

∮
C

f(λ)g(λ)dλ. (15)

On matrix-spaces a nice choice for an inner product is:

〈Ξ, X〉 = Tr(ΞX). (16)

Putting these together allows us to find the elements of the dual g∗. They should
be functions Ξ(λ) on C which have a bounded pairing with elements X ∈ g.
The pairing is:

〈Ξ(λ), X(λ)〉 = Tr

(
1

2πi

∮
C

Ξ(λ)X(λ)dλ

)
= TrResλ=0(Ξ(λ)X(λ)). (17)

From this we see that in order to get a non-zero pairing, Ξ(λ) should have
negative powers of λ. To make sure the pairing is bounded for all X(λ) ∈ g we
should take series with only a finite number of terms with negative powers in λ.
So elements Ξ(λ) ∈ g∗ are of the form Ξ(λ) =

∑∞
r=1 Ξrλ

−r with only a finite
number of Ξr non-zero. The pairing between elements Ξ(λ) ∈ g∗ and X(λ) ∈ g
then takes the simple form:

〈Ξ(λ), X(λ)〉 =

∞∑
r=0

Ξr+1Xr. (18)

Recall that when developing the Lax formalism with spectral parameter (see
also [2]), one finds that the Lax matrix can be diagonalized around each pole
λk:

L(λ) = g(k)(λ)A(k)(λ)g(k)−1(λ), (19)

with g(k)(λ) a matrix regular around λk and A(k)(λ) a diagonal matrix. One
can thus decompose:

L(λ) = L0 +
∑
k

Lk(λ) (20)

with the Lk given by:

Lk(λ) =
(
g(k)(λ)A(k)(λ)g(k)−1(λ)

)
−
, (21)

where the subscript minus denotes taking the polar part at the relevant pole λk.
So for a Lax matrix with a single pole at 0, we can interpret the Lax matrix

as an element of the dual g∗. The regular matrices g(k)(λ) can be interpreted
as being elements of G acting on g∗ with the coadjoint action:

Ad∗(g)Ξ(X) = Ξ(Ad(g−1)) = Ξ(g−1Xg), (22)
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so with our pairing:

Ad∗(g)Ξ = gΞg−1. (23)

This fits in nicely with the diagonalization scheme encountered when developing
the Lax formalism, with the matrix M playing the role of a connection, with
transformation law:

Mg = gMg−1 + ġg−1, (24)

where the overdot denotes the time-derivative. The Lax equation is then just
the covariant derivative of L(λ, t) set to zero:

0 = ∇ML = L̇− [M,L] . (25)

So we see that, for a time-independent A(λ), the time evolution of the Lax
matrix is a curve through a coadjoint orbit determined by A(λ).

The loop algebra formalism also yields a nice scheme for constructing a
Poisson bracket on the matrix elements of L(λ) which makes sure the eigenvalues
are in involution. This Poisson bracket is called the Konstant-Kirillov bracket.
This construction is unfortunately beyond the scope of this paper. For more
information, see [2].

In the case of multiple poles one constructs a loop algebra gk around each
pole λk by considering the maps from a small loop around λk (and only enclosing
one pole) to the Lie group G. Taking the direct sum of these algebras we get a
loop algebra g. This algebra has associated to it a Lie group which is the direct
product of loop groups Gk consisting of matrices regular around λk.

4 Factorization in integrable systems

In the scheme presented above M is chosen such that it satisfies the transfor-
mation law (24) for all g ∈ G. In the construction of integrable system one
encounters the converse question: given a connection M , which g(t) ∈ G satisfy
(24) and the Lax equation? The Lax equation makes sure that L(λ) and M(λ)
are simultaniously diagonalized, if A(k)(λ) = g(k)−1(λ)L(λ)g(k)(λ) is a diago-
nalization for for L(λ) around λk, then the correspondingly transformed M(λ):

B(k)(λ) = g(k)−1(λ)M(λ)g(k)(λ)− g(k)−1(λ)ġ(k)(λ) (26)

should be diagonal to make sure the right hand side of

Ȧ(k)(λ) =
[
B(k)(λ), A(k)(λ)

]
(27)

is diagonal. We can view (26) as an equation of motion for g(λ, t). In order to
do a neat analysis of this equation of motion it is convenient to pick a specific
form for M(λ). From matching the poles on both sides of (27) one finds that
the most general form for M(λ) is:

M(λ) = M0+
∑
k

Mk, with Mk(λ) =
(
g(k)(λ)B(k)(λ)g(k)−1(λ)

)
−
.(28)

This means we can analyse all possible choices forM(λ) by looking at all possible
choices for B(k)(λ). One has three properties to fix when constructing B(k)(λ):
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which diagonal entries are non-zero, where in the λ-plane they have their poles
and what the order of these poles is. This means we can span the space of
possible B(k)(λ) by diagonal matrices with a single pole of order n at λk in the
αα entry. That is, matrices ξi with i = (k, n, α) given by:

ξi(λ) =
Eαα

(λ− λk)n
, (29)

where Eαα denotes the matrix with a one in entry αα and the rest of the entries
zero. This leads us to the consideration of Mi:

Mi =
(
g(k)ξig

(k)−1
)
k
, (30)

where the subscript k denotes taking the polar part at λk, and the ti-time
evolutions of L associated with them through the Lax equation:

∂tiL = [Mi, L] , (31)

are called the elementary flows. It turns out that these flows commute, and
decomposing a given M into Mi corresponds to decomposing its flow into a
composition of elementary ones.

Plugging these Mi in to (26), setting i = (k, n, α) and solving for ∂tig
(k′)

yields the equation of motion:

∂tig
(k′) = Mig

(k′) − g(k
′)B

(k′)
i . (32)

Here B
(k′)
i is Mi diagonalized around λk′ . Now for k = k′ we have B

(k′)
i =

ξi+regular, since g(k) is regular around λk and the only polar contibution comes
from Mi. For k 6= k′ all other terms in the equation are regular around λk′ , it

follows that B
(k′)
i is regular around λk′ . Note that the requirement that g(k

′)(λ)

diagonalizes L(λ) does not fix g(k
′)(λ) completely. Multiplication from the right

by a regular diagonal matrix d(k
′)(λ) will not change the diagonalization. We

can thus redefine g(k
′)(λ) 7→ g(k

′)(λ)d(k
′)(λ), this changes (32) and absorbing

this change into B
(k′)
i we get B

(k′)
i (λ) 7→ B

(k′)
i (λ) +B

(k′)−1
i (λ)∂tid

(k′)(λ). This

freedom can be used to remove the regular part of B
(k′)
i (λ), for details see [2].

We have thus found for our equations of motion that for k = k′:

∂tig
(k) =

(
Mi − g(k)ξig(k)−1

)
g(k) = −

(
g(k)ξig

(k)−1
)
+
g(k), (33)

and for k 6= k′:

∂tig
(k′) = Mig

(k′). (34)

We now proceed to reduce (33) to a factorization problem. In order to make
the notation less cumbersome, we treat the single pole case with the pole at
λk = 0 first. For clarity we also relabel g(k)(λ) = g+(λ). In this notation we
have:

∂tig+ = −
(
g+ξig

−1
+

)
+
g+ (35)

as our equations of motion, one for each i = (n, α). We claim that (35) can be
solved by solving the factorization problem, in the notation of theorem 2.1:

g−1− (λ, t)g+(λ, t) = e
∑

j ξjtjg+(λ, 0)e−
∑

j ξjtj , (36)
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where t = (t1,1, t1,2, . . .). It is easy to see that the g+(λ, t) obtained from solving
the factorization does indeed solve (35). Take the derivate with respect to ti
of (36), and split into g+(λ, t) and g−(λ, t) terms by multiplying from the left
by g−(λ, t) and from the right by g−1+ (λ, t). This yields (suppressing the (λ, t)-
dependence):

−∂tig−g−1− + ∂tig+g
−1
+ = g−ξig

−1
− − g+ξig−1+ . (37)

Our usual equating the polar parts of the equation now gives:

∂tig+(λ, t)g−1+ (λ, t) = −
(
g+(λ, t)ξi(λ)g−1+ (λ, t)

)
+
, (38)

∂tig−(λ, t)g−1− (λ, t) = −g−(λ, t)ξi(λ)g−1− (λ, t) +
(
g+(λ, t)ξi(λ)g−1+ (λ, t)

)
− (39)

where we used that g−(λ, t)ξig
−1
− (λ, t) is purely singular around zero. We see

that the first of these equations is (35) and we conclude that solving the factor-
ization problem automatically solves our equations of motion.

The question remains why this scheme works, it is rather suprising that we
can rewrite a system of differential equations in terms of an algebraic problem.
Recall that our matrices g+(λ, t) can be seen as elements of some loop group G,
and our solution should be a curve though this group. In our factorization the
matrices g−(λ, t) occur. Since these are purely singular inside our loop, we can
interpret them as being in the image under the exponential map of g∗. This
implies that to properly interpret (36) we have to consider the full loop algebra:

g̃ = g + g∗, (40)

with elements of the form
∑∞
r=−nXrλ

r and the usual pointwise matrix commu-
tator. Any element X ∈ g̃ can be decomposed into a polar and a singular part,
this corresponds to decomposing

X = X+ −X−, (41)

with X+ ∈ g and X− ∈ g∗. The minus sign is conventional and chosen to match
the formulation of the factorization problem, at the group level we have the
decomposition:

g(λ) = g−1− (λ)g+(λ), (42)

with g+(λ) ∈ exp(g) and g−(λ) ∈ exp(g∗). This means that the decomposition
(41) corresponds to a Riemann-Hilbert problem. So what should the formulation
of this Riemann-Hilbert problem be in our case? Equation (35) tells us we are
looking for g+(λ) ∈ exp(g) and we have the boundary condition that g+(λ, 0)
is regular around λ = 0 and diagonalizes L(λ, 0). Looking at (36) we see that
we have g(λ, t) equal to the right hand side there. This expression is that of
the representation of g(λ, 0) at time t under the flow of ξi(λ). This makes
sense, in the full loop algebra ξi(λ) generates the same time evolution as the
Lax-equation. This simple evolution does, however, not take into account the
regularity conditions. To find the regular part g+(λ, t) we have to solve the
factorization (36).

This leads us to a reformulation that is more convenient for the multipole
case, define:

θ−1− (λ, t) = e−
∑

i ξi(λ)tig−1− (λ, t), θ+(λ, t) = g+(λ, t)g+(λ, 0). (43)
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Our factorization problem then becomes:

θ−1− (λ, t)θ+(λ, t) = exp

(
−g+(λ, 0)

∑
i

ξi(λ)tig
−1
+ (λ, 0)

)
, (44)

where the right hand side is the flow of ξ(λ) in the frame where L(λ, 0) is
diagonal. For the case of multiple poles we now construct a loop algebra around
each point, and take the direct sum to get the loop algebra for our problem. We
can now formulate the Riemann-Hilbert problem in terms of elements g̃(k)(λ)
defined on loops Γ(k) around the poles λk, and look for matrices g+(λ) and
g−(λ), analytic inside respectively outside all Γ(k), satisfying:

g−1− (λ)g+(λ) = g̃(k)(λ), λ ∈ Γ(k), (45)

for all k. The solution to this Riemann-Hilbert can be found simply by first

solving the problem on the fist contour Γ(1). Call this solution g
(1)
± (λ). We

can now look for the full solution g± = fg
(1)
± . On the contour Γ(2) we then

get the modified problem f−1− f+ = g̃−(λ)g(2)(λ)g1−(λ). We can proceed in this
manner until we have found the solution to our full Riemann-Hilbert problem.
The remaining question is what g̃(k)(λ) should be in order for the solution to
the Riemann-Hilbert problem to solve the equations (33) and (34). We already
know that the flows associated to the Mi commute. Putting this together with
the discussion above, we find:

θ−1− (λ, t)θ+(λ, t) = e−g+(λ,0)
∑

i ξi(λ)tig
−1
+ (λ,0) (46)

as our Riemann-Hilbert problem. A similar calculation as done for the single
pole case shows that this does indeed solve our hierarchy (33,34).

5 Conclusion

We have shown how the Riemann-Hilbert factorization problem is formulated as
a mathematical theorem and seen how it arises in integrable systems. It is quite
a surprising feature of integrable systems that hierarchies like (33,34) admit
expression of their solution in terms of an algebraic problem. In this paper we
discussed how this feature follows from the formulation of the hierarchy in terms
of loop groups and algebras.

In general, there is no algorithm to solve a problem like (36). However, the
hierarchy was a system of nonlinear differential equations and the factorization
problem, as can be seen from the proof of (2.1), boils down to solving a linear
singular-integral equation. So in a sense the formulation of the original problem
in terms of a Riemann-Hilbert problem linearizes the problem. Many techniques
have been developed to handle this problem, for an overview see [5].

In applications the Riemann-Hilbert problem is often solved by making a
good Ansatz. A nice example of this is the open Toda chain treated in [2], where
the problem is already formulated in terms of groups and algebras, making the
procedure quite transparant.
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