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Abstract

Written for advanced bachelor students in physics with a minimal
knowledge of General Relativity and cosmology, this bachelor thesis gives
an introduction into the subject of gravitational waves. It treats the
waves on both flat and cosmological background and derives a formula for
the energy-density spectrum due to gravitational waves. We then apply
the theory developed to gravitational waves from bubble collisions during
first-order phase transitions that occur in the radiation era, and find that
the energy-density scales as the square of the ratio between the duration
of the phase transition and the Hubble time at the time of the phase tran-
sition and as the square of the ratio between the kinectic energy-density
associated with the phase transition and total energy-density at that time.
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1 Introduction

This text is written as a bachelor thesis in physics, as part of the bachelor sem-
inar theoretical physics in the academic year ’07-’08. The goal of this seminar
was to let a group of students together discover the main principles of cosmology.
This was done by letting each student pick a subject to prepare a presentation
on, and to write a thesis about. Being already familiar with General Relativ-
ity, I picked the subject of gravitational waves, along with two other students.
We divided the subject: a treatment of gravitational waves from astrophysical
sources and methods of detection is found in [7], and a treatment of the evo-
lution of long wavelength gravitational waves created during inflation is given
in [10]. In this thesis I focus on shorter wavelength gravitational waves created
by bubble collisions during first-order phase transitions, and I aim to give the
reader insight into how the relevant physical parameters give rise to gravita-
tional waves.
These gravitational waves are of physical importance for they could provide us
with a view of the phase transitions in the early universe (for a treatment of
these phase transitions see [13]), in particular the electroweak phase transition.
These phase transitions are hidden from our sight, because the universe was
opaque at the time they took place. Gravitational waves, however, have the in-
teresting property that they barely interact with anything, thus allowing them
to pass barely attenuated from the phase transition to us. This property of
course also means that they are very hard to detect, but promising efforts are
being made to build detectors that are sensitive enough.
As this text is written as a bachelor thesis, I have tried to make it suitable for
physics students at the end of their bachelor, with a basic knowledge of cosmol-
ogy, as taught in the introductory lectures of the bachelor seminar. Calculations
are therefore presented at a high level of detail, allowing the reader to focus on
the physics instead of the computations. However, since gravitational waves are
a prediction from General Relativity, I have chosen to assume the reader has at
least a basic knowledge of this theory, even though it is not part of the bachelor
curriculum. Starting from this assumption, I first present the linearized theory
of relativity, which predicts the existence of gravitational waves, in the relatively
simple setting of a flat background on which the waves propagate, with as main
goal to give the reader some insight and intuition for what gravitational waves
are, and where they come from. The next chapter gives a quick recapitulation
of the basics of Friedmann-Lemâıtre-Robertson-Walker cosmology as presented
during the introductory lectures of the seminar. The reader should then be
ready for the somewhat more complicated derivation of the equations of motion
for gravitational waves in a FLRW-universe. In chapter 5 we then present a
scheme to extract the main observable quantity of gravitational waves, namely
the spectrum of abundance of energy density, from the theory. Finally, in the
last chapter, we get to our intended subject, gravitational waves from bubble
collisions during first-order phase transitions, where I hope to give the reader
insight into the process underlying the generation of gravitational waves by bub-
ble collisions.
Throughout the text we use the following conventions:

• index convention: Latin indices run from 1 to 3, denoting the spatial
coordinates, and Greek indices run from 0 to 3, with 0 denoting the time
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coordinate,

• sign convention:
ηµν = diag(−1, 1, 1, 1), (1)

• Fourier convention:
f̂(k) =

∫
dx√
2π
f(x)eikx, (2)

• form for the Einstein equations (to fix the signs):

Rµν −
1
2
Rgµν = 8πTµν , (3)

• Einstein summation convention (unless stated otherwise):

TµB
µ =

3∑
µ=0

TµB
µ, (4)

• and natural units:
~ = c = 1. (5)

As the reader may sometimes need some distraction from the black and white
text, I refer for decoration to figure 1.
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Figure 1: Decoration: colorful impression of gravitational waves.
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2 Gravitational Waves

The possibility of existence of gravitational waves follows from the linearized
version of General Relativity. In this approximation for the much more com-
plicated equations of the full theory of General Relativity, one looks at small
pertubations from known solutions to Einstein’s equations. In this thesis we will
consider pertubations on the Minkowski spacetime and on Friedmann-Lemâıtre-
Robertson-Walker background.
To get some feel for what gravitational waves are, and how they follow from
Einstein’s theory of General Relativity, we will first go through the theory of
linearized General Relativity on Minkowski space. This is the simpler case, and
thus gives more insight at the cost of less work.

2.1 Linearized Einstein Equations

For the derivation of the linearized Einstein equations, we will be closely fol-
lowing [5]. The physical situation described by linearized General Relativity is
that of a weak gravitational field.
The first step is to assume we have Minkowski space, with a small, symmetric
tensor field perturbation on it:

gµν = ηµν + hµν , (6)

where we assume |hµν | � 1. Now we go through the usual procedure to find
Einstein’s equations, but we ignore anything higher than first order in h. We
thus have for the inverse metric:

δλµ = gµνg
νλ = ηµνg

νλ + hµνg
νλ, (7)

which is solved by
gνλ = ηνλ − hνλ. (8)

Now that we have the inverse metric, we can calculate the Christoffel symbols:

Γρµν =
1
2
gρσ(∂µgσν + ∂νgµσ − ∂σgµν) (9)

=
1
2
ηρσ(∂µhσν + ∂νhµσ − ∂σhµν), (10)

where we used ∂σηµν = 0, and neglected all terms higher than first order in
hµν . Now on to the Riemann curvature tensor, for which we can shorten the
calculation a bit by noting that the Γ2-terms are always of quadratic order in
hµν , and can thus be neglected.

Rρσµν = ∂µΓρνσ − ∂νΓρσµ

=
ηρλ

2
(∂µ∂σhλν + ∂µ∂νhσλ − ∂µ∂λhσν

− ∂σ∂µhλν − ∂σ∂νhµλ + ∂σ∂λhµν)

=
1
2
ηρλ(∂µ∂νhσλ − ∂µ∂λhσν − ∂σ∂νhµλ + ∂σ∂λhµν). (11)
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Contracting over ρ and µ to obtain the Ricci tensor:

Rµν = Rκµκν =
1
2
ηκλ(∂κ∂νhµλ − ∂κ∂λhµν − ∂µ∂νhκλ + ∂µ∂λhκν)

=
1
2

(∂κ∂νh κµ − �̄hµν − ∂µ∂νh+ ∂µ∂λh
λ
ν), (12)

where we used �̄ to denote the flat space D’Alembertian (�̄ = −∂2
t + ∂2

x + ∂2
y +

∂2
z = ∂µ∂µ) and h to denote the trace of hµν (h = hµµ = ηµκhµκ). The last

ingredient we need for the Einstein equations is the Ricci scalar:

R = ηµνRµν =
ηµν

2
(∂κ∂νh κµ − �̄hµν − ∂µ∂νh+ ∂µ∂λh

λµ)

=
1
2

(∂κ∂νhνκ − �̄h− �̄h+ ∂ν∂λh
λν)

= ∂κ∂νh
νκ − �̄h. (13)

Now that we have all terms, we can write down the Einstein equations:

8πGTµν = Rµν −
1
2
Rgµν

=
1
2

(∂κ∂µhκν − �̄hµν − ∂ν∂µh+ ∂ν∂λh
λ
µ

− ηµν∂κ∂λh
λκ + ηµν�̄h). (14)

Since the right hand side in these equations are first order in hµν , so is Tµν ,
and we will thus only consider the lowest nonvanishing order in Tµν , which
corresponds to zeroth order in hµν .
As we will see, not all 10 degrees of freedom we have in hµν are physical, there
is still gauge freedom left, and this needs dealing with before we start solving
(14).

2.2 Gauge Invariance

To show we indeed have gauge freedom, we will consider the slightly more general
case of a background space-time with perturbations on it, which is diffeomorphic
to the physical space-time (still following [5]). In mathematical terms: let B
be a pseudo-Riemannian manifold with metric ηµν (for Minkowski space as
background, but this discussion holds other metrics also), we will refer to this as
the background space-time. Let P be a pseudo-Riemannian manifold equipped
with some metric gµν that satisfies the Einstein equations, call this the physical
space-time. Let φ: B → P be a diffeomorphism between the two. We can then
define our perturbations to be tensor fields on B that are the difference between
ηµν and the pull-back of gµν (which can be seen as a representation of gµν on
B):

hµν = (φ∗g)µν − ηµν . (15)

Now, before we had |hµν | � 1, but for a general diffeomorphism, this does
not hold for the hµν from (15). Of course, if the gravitational fields on P are
weak, we can just restrict ourselves to diffeomorphisms for which this does hold.
Then, by virtue of gµν satisfying the Einstein equations on P, hµν satisfies the
linearized Einstein equations (14) on B.
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We can use these facts to find out what gauge transformations leave the physical
spacetime invariant. Take Xµ(x) to be a vector field on B. By means of its flow,
any vector field generates a one-parameter family of diffeomorphisms Hε: B →
B, with ε ∈I, the maximal interval of definition. Note that for any diffeomor-
phism giving a small perturbation, (φ ◦Hε) will also give a small perturbation,
if we take ε to be sufficiently small. We can thus use this flow to construct a
family of perturbations, parameterized by ε. Simplifying as far as we can:

h(ε)
µν = [(φ ◦Hε)∗g]µν − ηµν

= [Hε∗(φ∗g)]µν − ηµν
= Hε∗(h+ η)µν − ηµν
= Hε∗(hµν) +Hε∗(ηµν)− ηµν . (16)

Here we used (f ◦ k)∗ = k∗ ◦ f∗ for two diffeomorphisms f and k, equation
(15), and the linearity of the pull-back. If we now approximate this under
the assumption that ε is very small we see that the first order approximation
with respect to ε for the last two terms is a Lie derivative (given by LXf =
d
dt |t=0Ht∗ ◦ f) and Hε∗(hµν) = hµν at lowest order:

h(ε)
µν = Hε∗(hµν) + ε

(
Hε∗(ηµν)− ηµν

ε

)
= hµν + εLXηµν . (17)

We thus see we need the Lie derivative of the metric. To compute this, we need
the expression of the Lie derivative in coordinates for a symmetric two-tensor:

LXgµν = Xσ∂σgµν + (∂µXλ)gλν + (∂νXλ)gλµ. (18)

Plugging in the relations:

∂σgµν = ∇σgµν + Γλσµgλν + Γλσνgλµ (19)

and
∂µX

λ = ∇µXλ − ΓλµρX
ρ, (20)

we get:

LXgµν = Xσ∇σgµν +XσΓλσµgλν +XσΓλσνgλµ + (∇µXλ)gλν

− ΓλµρX
ρgλν + (∇νXλ)gλµ − ΓλνρX

ρgλµ

= Xσ∇σgµν + (∇µXλ)gλν + (∇νXλ)gλµ. (21)

By the metric compatibility of the Levi-Cevita connection we get from this, in
the case that gµν is our metric:

LXgµν = ∇µVν +∇νVµ = 2∇(µVν). (22)

Now evaluating (17) to linear order, also ignoring mixed hµν and ε terms leads
us to:

h(ε)
µν = hµν + 2ε∂(µXν), (23)

because the covariant derivative is just the partial derivative in this setting.
We have thus found a transformation that leaves the physics invariant, namely
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adding a 2ε∂(µXν) term to the pertubation, with ε small. We could verify that
this transformation indeed leaves the physics invariant by checking that it does
not change the linearized Riemann tensor, but this a straigthforward calculation
which is not strictly necessary. What is important is that we have some gauge
degree of freedom, and in the next section we will look at a clever way of using
this freedom.

2.3 Fixing a Gauge

It turns out that there is a gauge which simplifies (14) somewhat [5]. This gauge
is sometimes called the harmonic gauge, like in [5], and sometimes the linearized
De Donder gauge, as in [11], and it imposes the condition �xµ = ∇λ∇λxµ = 0
on the coordinate functions. One can express this condition in terms of the
metric and its derivatives (note that the xµ are just functions, not components
of a vectorfield):

0 = ∇λ∇λxµ

= gκλ∇κ∂λxµ

= gκλ∂κδ
µ
λ − g

κλΓακλδ
µ
α

= gκλΓµκλ. (24)

So, in the case of linearized General Relativity on a Minkowski background:

0 =
1
2
ηκληµα(∂κhλα + ∂λhκα − ∂αhκλ)

= ∂κh
κµ − ηµα

2
∂αh. (25)

Contracting with ηµν to get rid of the ηµα:

∂κh
κ
ν −

1
2
∂νh = 0. (26)

Note that these are just four conditions, so we still have six degrees of freedom
left. Now, before we deal with them, we will have a look at what form the
Einstein equations (14) get in this gauge:

8πGTµν =
1
2

(∂κ∂µhκν − �̄hµν − ∂ν∂µh+ ∂ν∂λh
λ
µ

−ηµν∂κ∂λhλκ + ηµν�̄h) (27)

=
1
2

(
1
2
∂µ∂νh+

1
2
∂ν∂µh− ∂ν∂µh

−�̄hµν − ηµνηκα∂κ∂λhλα) (28)

=
1
2

(ηµν�̄h− �̄hµν −
1
2
ηµνη

κα∂κ∂αh) (29)

=
1
4
ηµν�̄h−

1
2
�̄hµν , (30)

or, cleaning up a bit:

−16πGTµν = �̄hµν −
1
2
ηµν�̄h. (31)
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By defining a so-called trace-reversed pertubation:

h̄µν = hµν −
1
2
ηµνh, (32)

we can give this an even more elegant form:

�̄h̄µν = −16πGTµν . (33)

Before we fix the rest of our degrees of freedom, we can first start solving these
equations in a more general setting, and then impose gauge conditions on the
solutions we find.

2.4 Vacuum Equations

In order to get a feel for how gravitational waves propagate through spacetime,
it is educational to first look at the vacuum case ([5]):

�̄h̄µν = 0. (34)

Of course, the solutions to this equation are well know, and the subset of these
is spanned by the plane waves, so let us assume that the solution is a plane
wave:

h̄µν = Cµνe
ikλx

λ

. (35)

Note that this solution is complex, we will take the real part if we want to have
the physical result. Now we can start fixing the constants by plugging in:

0 = �̄h̄µν

= ηρσ∂ρ∂σCµνe
ikλx

λ

= −ηρσkρkσCµνeikλx
λ

= −kρkρh̄µν . (36)

We are not interested in the case that h̄µν vanishes in all components, so we
should have kρkρ = 0, in other words: the wave vector is light-like. This means
that gravitational waves propagate at the speed of light. Usually, one splits the
wave vector in to a time-component and a space-vector: kρ = (ω,k), where ω
is the frequency of the wave. In this terminology, the wave being light-like can
be expressed as:

ω2 = k2. (37)

So now we still have thirteen degrees of freedom left: ten free components in
Cµν and three in kρ. We can eliminated quite of lot of these by applying gauge
conditions, starting with the harmonic gauge:

0 = ∂κh
κ
ν −

1
2
∂νh

= ∂κh̄
κ
ν

= iCκνkκe
ikλx

λ

. (38)

The exponent does not vanish everywhere, so for (38) to hold, we must have
that

Cκνk
κ = 0, (39)
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which is telling us that the wave vector is orthogonal to the perturbation. Equa-
tion (39) has one free index, so it gives us four conditions on Cµν , reducing the
number of free components in Cµν to six. To fix these we can go to the transverse
traceless subgauge (the name will become clear in a moment), by converting Cµν
such that:

Cµµ = 0 (40)

and
C0ν = 0. (41)

Of course, one still has to show that this conversion can actually be performed
with the freedom left. This freedom consists of the harmonic gauge being in-
variant under translation by a set of harmonic coordinates, for ξµ such that
�ξµ = 0 we have that for the coordinate transformation xµ → xµ + ξµ:

�(xµ + ξµ) = �xµ = 0. (42)

However, showing how this can be used to transform Cµν gives little insight at
the cost of much calculating. For a complete treatment, see [5]. With condition
(41) we also picked the Lorentz frame (rest frame) to construct our solution in,
while the actual gauge condition is UµCµν = 0, with Uµ the four-velocity of this
frame. This condition is also actually just three extra conditions, for it implies
(39) for ν = 0.
Counting degrees of freedom tells us that, from the sixteen components in Cµν ,
we had ten left by symmetry, fixed four by (39), and another four by (40) and
(41), leaving us with two independent components in Cµν . Because we have used
all our gauge freedom, these components must have some physical meaning. The
last thing we can choose is the axis along which the wave propagates, we will
choose the x3 axis. This immediately gives us for the light-like (equation (37))
wave vector:

kµ = (ω, 0, 0, k3) = (ω, 0, 0,±ω). (43)

For Cµν we can use that C0ν = 0 to conclude that, because

0 = kµCµν = −ωC0ν + k3C3ν = ±ωC3ν , (44)

we have:
C3ν = 0. (45)

Combining this with the tracelessness and symmetry of Cµν we get for its matrix
form:

Cµν =


0 0 0 0
0 C11 C12 0
0 C12 −C11 0
0 0 0 0

 . (46)

So we have found that we can characterize gravitational wave traveling along
the x3 direction by C11, C12 and ω. Note that h̄µν is traceless, and we thus have
h̄µν = hµν in this gauge. By now the name transverse traceless should also be
clear: the perturbation is traceless, and the perturbations are perpendicular to
the direction of propagation, thus transverse.
Incidentally, this procedure for fixing a gauge also carries with it a convenient
method for converting an arbitrary tensor Bµν to this transverse-traceless frame
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of reference. First, we pick just the spatial part of the tensor, Bij , and then
we project the tensor on to the subspace orthogonal to the spatial direction of
propagation of the gravitational wave, making it transverse. We do this defining
a projection operator Pij , which leaves the transverse part of the tensor intact,
and sets the rest to zero. Leaving intact means using the identity operator δij ,
and setting to zero is done by selecting the part of the tensor in the direction of
the wave by contracting with k̂j , and subtracting it from the tensor by multi-
plying with k̂i, where the k̂i is the unit vector in the direction of propagation.
So:

Pij = δij − k̂ik̂j . (47)

This is indeed a projection operator (when talking about this operator we will
always ignore the upper and lower index convention, and just sum over identical
indices):

PijPjl = δijδjl − δijk̂jk̂l − k̂ik̂jδjl + k̂ik̂jk̂jk̂l = δil − 2k̂ik̂l + k̂jk̂l = Pil, (48)

where we used that k̂jk̂j = 1. It projects on the subspace orthogonal to the
direction of propagation:

Pijki = δijki − k̂ik̂jki = kj − kj = 0. (49)

We can then make the tensor transverse by:

BT
ij = PilPjkBlk, (50)

which satisfies BT
ijki = 0 by (49). To finish making the tensor transverse-

traceless, we need to make sure the trace vanishes, so we subtract the trace of
the projected tensor BT

ii multiplied by the identity on the orthogonal subspace,
Pij , divided by its trace, 2:

BTT
ij = BT

ij −
1
2
PijB

T
mm = (PilPjk −

1
2
PijPmlPmk)Blk = (PilPjk −

1
2
PijPlk)Blk.

(51)
This will be extremely useful in finding the components of the energy-momentum
tensor that generate gravitational waves.

2.5 Gravitational Waves in Empty Space

We set out to solve the vacuum equations to see how gravitational waves prop-
agate through empty space, so let us have a look at what the waves do with
test particles. We know, from the discussion above, that we have two indepen-
dent components in Cµν . We now claim that these independent components
represent two independent polarizations, and for convenience and according to
convention, rename them: C+ := C11 and C× := C12, and treat them sepa-
rately.
For both polarizations, we will consider a ring of particles (radius L) lying in
the x1, x2-plane, centered around some point Oµ, and see how the unperturbed
distance to the point is affected by the waves. The unperturbed distance is of
course just the length of a straight line, as far as purely spatial separation is
concerned.
Consider the +-polarization first: assume that our metric is of the form

gµν = ηµν + ĥµν , (52)
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with ĥµν given by:

ĥµν(xµ) =


0 0 0 0
0 C+ 0 0
0 0 −C+ 0
0 0 0 0

 eikλx
λ

. (53)

Making the ring of particles idea more formal, we can parametrize by the angle
with respect to the x1-axis, θ, to get:

qµ(θ) = Oµ + (0, L cos θ, L sin θ, 0)µ. (54)

So the unit tangent vector to the straight line from Oµ to a point qµ(θ) on the
ring is given by:

nµ(θ) = (0, cos θ, sin θ, 0)µ, (55)

and for λ ∈ [0, L] we can parametrize the straight line by:

xµ(λ, θ) = Oµ + λnµ. (56)

In General Relativity the length of a path is given by:

s =
∫ b

0

√
gµν

dxµ

dλ

dxν

dλ
dλ, (57)

with λ an affine parameter and the path beginning at λ = 0 and ending at
λ = b. Plugging in (52) and (55), we get for the perturbed distance L′:

L′+ =
∫ L

0

√
gµν

dxµ

dλ

dxν

dλ
dλ

=
∫ L

0

√
gij(xµ(λ, θ))ni(θ)nj(θ)dλ

=
∫ L

0

√
ηijninj + ĥij(xµ(λ, θ))ni(θ)nj(θ)dλ

=
∫ L

0

√
1 + ĥij(xµ(λ, θ))ni(θ)nj(θ)dλ

=
∫ L

0

(1 +
1
2
ĥij(xµ(λ, θ))ni(θ)nj(θ))dλ

= L+
1
2

∫ L

0

ĥij(xµ(λ, θ))ni(θ)nj(θ)dλ, (58)

where we used the fact that nµ is of unit length, and ĥij � 1 allowed us to
expand the square root around 1. We can explicitly calculate the perturbation
δL := L′ − L, by plugging in (53) and (43) with k3 = ω:

δL+ =
1
2

∫ L

0

C+(cos2 θ − sin2 θ)eikα(Oα+λnα)dλ

=
1
2

∫ L

0

C+ cos(2θ)eiω(−O0+O4)dλ

=
LC+

2
cos(2θ)eiω(−O0+O4). (59)
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Finally, we can give a description of the perturbed ring by replacing L with
L′(Oµ, θ) in (54), since the perturbation is that of the straight line path:

q′µ+ (Oµ, θ) = Oµ + L′(0, cos θ, sin θ, 0)µ

= qµ(Oµ, θ) +
1
2
LC+e

iω(−O0+O4) cos(2θ)nµ(θ). (60)

Fixing O4 = 0 and letting O0 run, we can see what a +-polarized gravitational
wave does with a slice of spacetime by plotting the real part of this:

q̂+(O0, θ) = L(1 +
1
2
C+ cos(ωO0) cos(2θ) (cos θ, sin θ) , (61)

for different values of O0. The result is shown in figure 2. We can treat the

Figure 2: Plus polarisation. The displacement of the test particles in the ring
is grossly exagurated.

×-polarization in the same manner, up to equation (58). Here we plug in

ĥµν(xµ) =


0 0 0 0
0 0 C× 0
0 C× 0 0
0 0 0 0

 eikλx
λ

. (62)

to get for the perturbation in the distance:

δL× =
1
2

∫ L

0

C×(2 cos θ sin θ)eikα(Oα+λnα)dλ

=
1
2

∫ L

0

C× sin(2θ)eiω(−O0+O4)dλ

=
1
2
LC× sin(2θ)eiω(−O0+O4). (63)

Again fixing O4 = 0 and plotting

q̂×(O0, θ) = L(1 +
1
2
C× cos(ωO0) sin(2θ) (cos θ, sin θ) (64)

for different values of O0 gives us a picture of what a ×-polarized gravitational
wave does with a slice of spacetime. The plot is shown in figure 3. Now we
know what a gravitational wave does with spacetime, and thus have some more
intuition about what they are, we can proceed by looking at where they come
from.
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2.6 Einstein Equations in Matter

The linearized Einstein equations with a non-zero energy-momentum tensor, in
harmonic gauge, are given by equation (33):

�̄h̄µν = −16πGTµν . (65)

To get some feeling for what kind of sources cause gravitational waves we need
to look at the solution to these equations. However, the calculations involved
in solving (33) are somewhat lengthy, so, because we are only really interested
in the end-result, we will sketch the derivation as done in [5] instead of going
into to much detail.

One of the physicist’s favorite methods for solving an equation like (33), with
a differential operator acting on one side and a source on the other, is using a
Green’s function. In this case we are only interested in what effect a source
that lies inside the past light cone of a certain point has. The retarded Green’s
function G(xσ − yσ) for this particular differential operator is given by:

G(xσ − yσ) = − 1
4π|x− y|

δ(|x− y| − (x0 − y0))θ(x0 − y0)), (66)

where θ denotes the Heaviside function, which serves to select the cases x0 ≥ y0

(θ(x) = 0 for x < 0 and θ(x) = 1 for x ≥ 0). We can now write down a general
solution to (33):

h̄µν(xσ) = −16πG
∫
G(xσ − yσ)Tµν(yσ)d4y

= 4G
∫

1
|x− y|

Tµν(x0 − |x− y|,y)d3y, (67)

where in the second identity we have just integrated over y0, and used the delta
function. Upon restoring c, the 0-argument in Tµν becomes x0 − |x − y|/c, so
we see this is the time at which a wave reaching xσ would have been emitted.
This time is referred to as the retarded time, tr.
To turn this general solution into something we can give some more physi-
cal interpretation to, we need to make some assumptions about our energy-
momentum tensor. Here we assume it is an isolated, far away and slowly moving
source. Isolated and far away together translate into treating the source as cen-
tered around some point at a spatial distance R, with the difference in distance
between different parts of the source is a most δR, with δR� R. Slowly moving

Figure 3: Cross polarisation. The displacement of the test particles in the ring
is again grossly exagurated.
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means that the frequency ω of the waves emitted will be such that δR� ω−1.
Looking at the Fourier transform with respect to the time dependence in our
general solution gives:

˜̄hµν(ω,x) = 4G
∫
eiω|x−y| T̃µν(ω,y)

|x− y|
d3y. (68)

Our assumptions imply that eiω|x−y|/|x− y| can replaced by eiωR/R, thus ne-
glecting the y dependence, and we can bring this term outside the integral.
We can now use the harmonic gauge condition to limit the number of compo-
nents of ˜̄hµν we need to compute. In frequency space the gauge condition is
−iω˜̄h0ν = ∂i

˜̄hiν , which implies ˜̄h00 = i
ω∂i

˜̄hi0 = ∂i∂j
˜̄hij , so we can limit our-

selves to computing the spacelike components of ˜̄hµν . This means that we have
to integrate the spacelike components of T̃µν . This can be simplified by using
the conservation of energy equation up to first order in hµν : ∂µTµν , which in
frequency space becomes:

−∂kT̃ kµ = iωT̃ 0µ. (69)

Repeatedly integrating (68) by parts in reverse (to get the ∂kT̃ kµ in) and noting
that boundary terms vanish by the assumption that the source is isolated, we
can express the integral over the T̃ ij in terms of an integral over T̃ 00:∫

T̃ ij(ω,y)d3y = −ω
2

2

∫
yiyj T̃ 00(ω,y)d3y. (70)

If we now define the quadropole moment tensor of the energy density of the
source to be:

qij(y0) = 3
∫
yiyjT 00(y0,y)d3y, (71)

we get, after inverting the Fourier transform:

h̄ij(xσ) =
2G
3R

∂2qij
∂y0 2

(tr). (72)

So we see that a source with a non-vanishing second derivative of its quadrupole
moment tensor of the energy density emits gravitational waves. The quadrupole
moment tensor of energy density is a measure for the shape of the source, it
measures how the energy density (thus the mass) is distributed around the center
of the source. The second derivative of this then measures any non-uniformities
in the change of the shape over time, and it is these non-uniformities that
generate gravitational waves.
This means that for example the spherically symmetric collapse of a star will
not generate any gravitational waves (the spherical symmetry ∂2

0T
00(y0,y) =

−∂2
0T

00(y0,−y), together with the quadratic dependence on the distance in
(71) implies ∂2

0qij = 0). However, binary stars will emit gravitational radiation.
This is an important example of an astrophysical source, because the strongest
indication that gravitational waves do indeed exist is the consistency between
the energy loss (observable through a decrease in the period of the orbit) of the
binary pulsar PSR B1913+16 and the predicted energy loss due to gravitational
radiation. For a treatment of gravitational waves from binary stars in general
and the energy loss of PSR B1913+16 in particular see [8].
Later in this text we will see how gravitational waves are generated by bubble
collisions during phase transitions.
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3 Friedmann-Lemâıtre-Robertson-Walker

3.1 Einstein Equations

In this section we will briefly review the basic notions of Friedmann-Lemâıtre-
Robertson-Walker cosmology. The reader is assumed to be familiar with this
model, but we will need the Friedmann equations themselves as well as some
results obtained in deriving them later on in the text. In FLRW cosmology one
makes the following Ansatz for the metric:

gµν = a(η)2ηµν , (73)

where ηµν is just the Minkowski metric, a(η) is called the scale factor and is
a function of the conformal time η, which is related to the cosmic time t by
adη = dt. This Ansatz assumes that the universe is isotropic, homogeneous and
spatially flat. We proceed by computing the Einstein tensor for this metric.
Observe that the inverse metric is given by:

gµν =
1
a2
ηµν (74)

The Christoffel symbols are given by:

Γρµν =
1
2
gρβ(∂νgβµ + ∂µgβν − ∂βgµν)

=
a′

a
(δ0
µδ
ρ
ν + δ0

νδ
ρ
µ − δ

ρ
0ηµν), (75)

where a′ denotes the derivative of a with respect to conformal time, and the
main observations in the calculations are ∂λgκρ = δ0

ληκρaa
′ and ηκληλρ = δκρ .

On to the Ricci tensor, which is given by:

Rµν = ∂αΓαµν + ΓαλαΓλµν − ∂νΓαµα − ΓαλνΓλµα

=

(
a′′

a
−
(
a′

a

)2
)(
−2δ0

µδ
0
ν + ηµν

)
+
(
a′

a

)2

)
(
2δ0
µδ

0
ν + 2ηµν

)
=

(
a′′

a3
− 2

(
a′

a2

)2
)(
−2δ0

µδ
0
νa

2 + gµν
)

+ 3
(
a′

a2

)2

gµν . (76)

We can rewrite this in terms of the Hubble parameter H(t) = ȧ
a = a′

a2 (with
ȧ = da

dt ), and its derivative Ḣ = a′′

a3 − 2a
′ 2

a4 = H′

a :

Rµν = Ḣ
(
−2δ0

µδ
0
νa

2 + gµν
)

+ 3H2gµν . (77)

Taking the trace yields the Ricci scalar:

R = gµνRµν = 6Ḣ + 12H2, (78)

and we get for the Einstein tensor:

Gµν = Rµν −
1
2
gµνR

= Ḣ
(
−2δ0

µδ
0
νa

2 − 2gµν
)
− 3H2gµν . (79)

We then get for the Einstein equations with cosmological constant Λ:

8πGTµν = Gµν + Λgµν
= Ḣ

(
−2δ0

µδ
0
νa

2 − 2gµν
)
− (3H2 − Λ)gµν . (80)
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3.2 Stress-Energy Tensor

In order to solve the Einstein equations (80), we need to make some assumptions
about the stress-energy tensor. We assume it to be translational and rotational
invariant, which implies it to be that of a perfect fluid ([17]). We thus assume
it to be of the form:

Tµν = (ρ+ p)UµUν + pgµν , (81)

where ρ is the energy density, p is the pressure and Uµ is the four-velocity of
whatever it is we are constructing the stress-energy tensor for (Uµ = ( 1

a , 0, 0, 0)
in the rest frame). Next, we assume there is some relation between the pressure
and the energy density, w = p

ρ , this equation is called the equation of state. For
a dust, where we assume the particles do not interact, we have w = 0. This
corresponds to the so called matter era. For radiation we take w = 1

3 , this
corresponds to the radiation era.
We thus get, in the rest frame of the fluid, for the stress-energy tensor in the
radiation era:

Tµν = diag(ρ, p, p, p)a2. (82)

Note that our assumption that the universe is isotropic and homegeneous implies
that ρ and p are functions of time alone.
We can already extract quite a lot of information from these assumptions, by
conservation of energy we have (again in the fluid’s restframe):

0 = ∇µTµν
0 = ∇µTµ0 = ρ̇+ 3H(ρ+ p) (83)

= ρ̇+ 3
ȧ

a
(1 + w)ρ

= (a3(1+w)ρ)˙, (84)

where we just considered the ν = 0 equation since the rest is trivially satisfied.
From this we get for ρ:

ρ =
ρ0

a3(1+w)
, (85)

and for H:
H =

2
3(1 + w)t

. (86)

3.3 Friedmann Equations

Now that we have a form for the energy-momentum tensor, we can write down
explicit equations for a(t) in terms of the pressure and energy density.
From the 00-component of the Einstein equations (80) we get:

8πT00 = G00 + Λg00

8πρa2 = Ḣ(−2a2 − 2(−a2)) + (3H2 − Λ)a2 − Λa2

8πρa2 = 3ȧ2 − 2Λa2. (87)

This equation together with (84) are called the Friedmann equations for a spa-
tially flat universe. The rest of the components of the Einstein equations give
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us just the same equation as the conservation law (83). Setting Λ to zero, or
absorbing it into the energy density ρ, this equation yields for H:

H2 =
(
ȧ

a

)2

=
8πG

3
ρ, (88)

thus allowing us to express the Hubble factor in terms of the energy density.
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4 Gravitational Waves on a FLRW-background

4.1 Linearized Einstein Equations on FLRW-background

Being interested in cosmological sources for gravitational waves also means hav-
ing to care about how these waves propagate toward us over a very long period
of time. The FLRW cosmology tells us the universe expanded during its history,
and this can be taken into account by doing our linearized General Relativity on
a FLRW background metric, we will do this guided by [17]. We will go through
very much the same procedure as for the linearized theory on Minkowsky back-
ground, but this time the algebra involved is much less trivial, since not all
derivatives of the unperturbed metric are zero. In this chapter a bar on top of
a quantity will denote the unperturbed value. Our metric is given by (in terms
of cosmic time instead of conformal time):

gµν = ḡµν + hµν , (89)

where ḡµν denotes the unperturbed spatially flat FRLW-metric, in terms of
cosmic time:

ds2 = gµνdx
µdxν = −dt2 + a(t)2δijdx

idxj , (90)

and hµν is again a small, symmetric perturbation. To proceed with calculating
the Christoffel symbols, we also need the perturbation of the inverse metric:

hµν = gµν − ḡµν = ḡµν − ḡµλḡµκhµν − ḡµν = −ḡµλḡµκhλκ. (91)

Instead of just bluntly starting the calculations for the Christoffel symbols, it
pays to think a bit about what we should get. The formula for the Christoffel
symbols is (9):

Γρµν =
1
2
gρσ(∂µgσν + ∂νgµσ − ∂σgµν).

We know that the inverse metric part consist of an unperturbed and a perturbed
part, and so does the term in brackets. Working out the product will then give
us four terms: one fully unperturbed term, one with an unperturbed inverse
metric and a perturbed bracket factor, one the other way around and one term
with only perturbation factors. We drop the latter, since we are only interested
in terms linear in the perturbations. The first term of the four we already know
from equation (75), it is just the unperturbed Christoffel symbols, denoted by
Γ̄ρµν . We can rewrite the term with the unperturbed bracket factor in terms of
the unperturbed Christoffel symbols by using equation (91):

1
2
hρσ(∂µḡσν + ∂ν ḡµσ − ∂σ ḡµν) = −1

2
ḡρλḡσκhλκ(∂µḡσν + ∂ν ḡµσ − ∂σ ḡµν)

= −ḡρλhλκΓ̄κµν . (92)

This gives us for the perturbation of the Christoffel symbols:

δΓρµν = Γρµν − Γ̄ρµν =
1
2
ḡρλ(−2hλκΓ̄κµν + ∂µhσν + ∂νhµσ − ∂σhµν). (93)

Note that the unperturbed non-zero components of the Christoffel symbols (75)
in terms of cosmic time become:

Γ̄i0j =
ȧ

a
δij , Γ̄0

ij = aȧδij . (94)
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Plugging this into (93) gives us for the components of the perturbation of
Christoffel symbols (from here on we plug in the explicit form for the met-
ric, so the difference between upper and lower indices is from here on merely
typographical):

δΓijk =
1

2a2
δin(−2aȧhn0δjk + ∂jhnk + ∂khnj − ∂nhjk)

=
1

2a2
(−2aȧhi0δjk + ∂jhik + ∂khij − ∂ihjk) (95)

δΓij0 =
1

2a2
δin(−2ȧ

a
hnmδ

m
j + ∂0hjn + ∂jh0n − ∂nh0j)

=
1

2a2
(−2ȧ

a
hij + ∂0hij + ∂jh0i − ∂ih0j) (96)

δΓ0
ij = −1

2
(−2aȧh00δij + ∂jh0i + ∂ih0j − ∂0hij) (97)

δΓi00 =
1

2a2
δin(∂0h0n + ∂0h0n − ∂nh00)

=
1

2a2
(2∂0hi0 − ∂ih00) (98)

δΓ0
i0 = −1

2
(−2

ȧ

a
h0nδin + ∂0h0i + ∂ih00 − ∂0hi0)

=
ȧ

a
hi0 −

1
2
∂ih00 (99)

δΓ0
00 = −1

2
(∂0h00 + ∂0h00 − ∂0h00)

= −1
2
∂0h00 (100)

The next observation that can save us quite a lot of calculations is that we
are only really interested in the perturbation to the Einstein equations, since
we know the unperturbed equations from (80). In terms of the unperturbed
Christoffel symbols and up to first order in their perturbations, the perturbation
of the Ricci tensor is given by:

δRµν = ∂λδΓλµν − ∂νδΓλµλ + δΓλκλΓ̄κµν + δΓκµν Γ̄λκλ − δΓκµλΓ̄λκν − δΓλκν Γ̄κµλ (101)

Which gives us for the components (for an explicit calculation, see Appendix
A):

δRij =
1
2
∂j∂ih00 + (ȧ2 + aä)h00δij +

1
2
aȧḣ00δij +

ȧ

2a
(ḣkkδij − ḣij) +

1
2
ḧij

+
1

2a2
(∂k∂ihjk + ∂k∂jhij −∇2hij − ∂j∂ihkk) +

ȧ2

a2
(−hkkδij + 2hij)

− ȧ
a
∂khk0δij −

1
2

(∂j ḣ0i + ∂iḣ0j) + ȧ2h00δij −
3ȧ
2a

(∂jh0i + ∂ih0j)

− ȧ

2a
(∂jh0i + ∂ih0j), (102)
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δR0j = δRj0 = − ȧ
a
∂jh00 +

1
2a2

(∂i∂jhi0 −∇2hj0) + (
ä

a
+

2ȧ2

a2
)h0j

−1
2
∂0(

1
a2

(∂jhii − ∂ihij)), (103)

δR00 = − 1
2a
∇2h00 −

3ȧ
2a
ḣ00 +

1
a2
∂iḣ0i

− 1
2a2

(ḧii −
2ȧ
a
ḣii + 2(

ȧ2

a2
− ä

a
)hii). (104)

Now, we rewrite the Einstein equations a bit in order to save us the agony of
going through taking the trace of the Ricci tensor:

8πGTµν = Rµν −
1
2
gµνR

κ
κ

8πGTαα = −Rαα

8πG(Tµν −
1
2
gµνT

α
α) = Rµν −

1
2
gµνR

κ
κ +

1
2
Rααgµν

8πG(Tµν −
1
2
gµνT

α
α) = Rµν . (105)

The tensor on the left hand side of this equation is defined to be the source
tensor:

Sµν := Tµν −
1
2
gµνT

α
α. (106)

Since we are interested in the perturbation of the Einstein equations, we want
to know what the perturbation in the source tensor is up to first order in per-
turbations in both the stress-energy tensor and the metric:

δSµν = δTµν −
1
2
ḡµνδT

α
α −

1
2
hµν T̄

α
α. (107)

In the end, we want to have an equation that relates the perturbation in the
stress-energy tensor to a perturbation in the metric, in terms of that perturba-
tion and the scale factor (and its derivatives) alone. We thus want to get rid of
the unperturbed stress-energy tensor. Using (81) we can express Tµν in terms
of energy density and pressure, which in turn can be expressed in terms of the
scale factor using the Friedmann equation (87) (setting Λ = 0):

ρ̄ =
3

8πG
ȧ2

a2
, (108)

and thus by the conservation law (83) for p̄:

p̄ = − a

3ȧ
˙̄ρ− ρ̄

= − 3
8πG

(
a

ȧ
(
2ȧä
a2
− 2

ȧ3

a3
) +

ȧ2

a2

)
= − 1

8πG

(
2ä
a

+
ȧ2

a2

)
. (109)

This gives us for the trace of T̄µν :

T̄αα = −ρ̄+ 3p̄ = − 3
4πG

(
ä

a
+
ȧ2

a2

)
, (110)
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and we get for the components of the perturbation in the source tensor (equation
107):

δSij = δTij −
a2

2
δijδT

α
α +

3
4πG

(
ä

a
+
ȧ2

a2

)
hij (111)

δS0j = δT0j +
3

4πG

(
ä

a
+
ȧ2

a2

)
h0j (112)

δS00 = δT00 +
1
2
δTαα +

3
4πG

(
ä

a
+
ȧ2

a2

)
h00. (113)

So we finally get for the linearized Einstein equations on a Friedmann-Lemaitre-
Robertson-Walker background metric (moving all hµν-terms to the right hand
side):

8πG
(
δTij −

a2

2
δijδT

α
α

)
=

1
2
∂j∂ih00 + (ȧ2 + aä)h00δij +

ȧ

2a
(ḣkkδij − ḣij)

+
1

2a2
(∂k∂ihjk + ∂k∂jhij − ∂i∂ihij − ∂j∂ihkk)

+
ȧ2

a2
(−hkkδij − hij)−

1
2

(∂j ḣ0i + ∂iḣ0j)− 3
ä

a
hij

−3ȧ
2a

(∂jh0i + ∂ih0j)−
ȧ

2a
(∂jh0i + ∂ih0j)

+
1
2
aȧḣ00δij + ȧ2h00δij +

1
2
ḧij −

ȧ

a
∂khk0δij(114)

8πGδT0j = − ȧ
a
∂jh00 +

1
2a2

(∂i∂jhi0 − ∂i∂ihj0)

−1
2
∂0(

1
a2

(∂jhii − ∂ihij))− (
2ä
a

+
ȧ2

a2
)h0j (115)

8πG
(
δT00 +

1
2
δTαα

)
= − 1

2a
∂i∂ih00 +

1
a2
∂iḣ0i − 3

(
ä

a
+
ȧ2

a2

)
h00

−3ȧ
2a
ḣ00 −

1
2a2

(ḧii −
2ȧ
a
ḣii + 2(

ȧ2

a2
− ä

a
)hii)(116)

4.2 Fixing a Gauge

The linearized Einstein equations above are horribly complicated, so it is time
for us to think of a way of simplifying them. Just like in the case of a flat
background, we can do this by imposing certain conditions on the perturbations,
much like fixing a gauge. The subtle point here is, that even though we wil be
calling it fixing a gauge, there is actually some physical freedom left we will
be ignoring. The reason we can do this is that there is a very useful property
of the linearized Einstein equations in this setting, called the decomposition
theorem, which we will not prove here, a treatment can be found in [17]. This
theorem tells us we can split the Einstein equations into a part where just
scalar perturbations appear (treated in [2]), a part where just vector modes
appear (these modes can be shown to attenuate very fast), and a part with just
transverse traceless tensors appearing. These are tensor satisfying the following
conditions for the transverse traceless gauge:

∂ihij = hii = h0ν = 0 (117)
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This simplifies the Einstein equations quite a lot:

8πG
(
δTij −

a2

2
δijδT

α
α

)
= − ȧ

2a
ḣij −

1
2a2

∂i∂ihij −
ȧ2

a2
hij

−3
ä

a
hij +

1
2
ḧij (118)

8πGδT0j = 0 (119)

8πG
(
δT00 +

1
2
δTαα

)
= 0. (120)

We can eliminate the trace term from (118) by noting that the right hand side
of (118) should vanish when taking the trace over the space indices, giving:

gijδTij =
a2

2
gijδijδT

α
α

1
a2
δTii =

3
2
δTαα. (121)

But when we just take the trace of δTµν we get:

δTαα = −δT00 +
1
a2
δTii. (122)

If we now elimate δT00 from (122) using 120 we get:

1
2
δTαα =

1
a2
δTii =

3
2
δTαα, (123)

and since zero is the only number that gives the same when multiplied by 1
2 and

3
2 , we conclude that both δTαα and δTii vanish. Equation (118) then becomes:

8πGδTij = − ȧ

2a
ḣij −

1
2a2

∂i∂ihij −
ȧ2

a2
hij − 3

ä

a
hij +

1
2
ḧij . (124)

But we can still do better. First, we should take a better look at what δTij
is. From its perfect fluid form (81) we get for the perturbation in the energy-
momentum tensor to first order (in the fluid’s rest frame):

δTij = pgij − p̄ḡij = p̄hij + a2Πij (125)

= − 1
8πG

(
2ä
a

+
ȧ2

a2

)
hij + a2Πij , (126)

where for the last identity we used (109), and we define Πij to be the tenso-
rial perturbation in the product of the background metric with the pressure,
also called the anisotropic stress. The above tells us that the part of δTµν we
are interested in satisfies the same conditions as hµν : ∂iδT

(TT)
ij = δT

(TT)
ii =

δT
(TT)
0ν = 0, and thus the same should hold for the part of Πij we are interested

in. We call this the transverse traceless part of Πij , denoted by Π(TT)
ij . Moving

all terms containing hµν to the right hand side leaves us with:

8πGa2Π(TT)
ij = − ȧ

2a
ḣij −

1
2a2

∂i∂ihij −
ä

a
hij +

1
2
ḧij . (127)
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If we now define h̃µν by hij = a2h̃ij (so ḣij = 2aȧh̃ij +a2 ˙̃
hij and ḧij = 2ȧ2h̃ij +

2aäh̃ij + 4aȧ ˙̃
hij + a2¨̃

hij) we can rewrite this as:

16πGa2Π(TT)
ij = −2ȧ2h̃ij − aȧ ˙̃

hij − ∂i∂ih̃ij − 2aäh̃ij + 2ȧ2h̃ij

+2aäh̃ij + 4aȧ ˙̃
hij + a2¨̃

hij

= −∂i∂ih̃ij + a2¨̃
hij + 3aȧ ˙̃

hij (128)

This equation is very similar to equation (33), the equation of motion for grav-
itational waves on a flat background. Note that ḡµν∂µ∂ν = −∂2

0 + 1
a2 ∂i∂i, so if

we move the a2 from the left hand side to the right hand side, we get:

16πGΠ(TT)
ij = −ḡµν∂µ∂ν h̃ij + 3

ȧ

a
˙̃
hij , (129)

which looks like a wave equation with source Π(TT ) and friction term 3 ȧa = 3H,
which is sometimes called the Hubble friction, and tells us that the wave will
lose amplitude due to the expansion of the universe.
The similarity is even more striking when we look at what the D’Alembertian �
becomes in this space-time (let f : M → R be a test-function on the space-time
manifold):

�f = ∇µ∇µf = gµν∂µ∂νf − gµνΓρµν∂ρf. (130)

Using equation (94) for the Christoffel symbols and ḡij = 1
a2 δ

ij for the space-
components of the inverse metric, we can evaluate the last term explicitly up
to zeroth order in the perturbation (we would drop the higher order terms later
on anyway):

ḡµν Γ̄ρµν∂ρf =
1
a2
δijaȧδij ḟ

=
3ȧ
a
ḟ . (131)

We thus get for the equation of motion for gravitational waves in a Friedmann-
Lemâıtre-Roberterson-Walker universe:

−16πGΠ(TT)
ij = �h̃ij . (132)
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5 Energy Density Spectrum

5.1 The Quantity of Interest

Gravitational waves are more than just an artifact that comes up when lineariz-
ing Einstein’s theory of General Relativity. Even though they have never been
detected, their existence is widely accepted, mainly due to the agreement in the
predicted energy loss to gravitational radiation and the observed energy loss of
the binary pulsar PSR B1913+16. When physicists theorize whether a certain
phenomenon could be a source of gravitational waves a very important question
that arises is: what is the energy density for a given wavelength today? More
specifically, we will be interested in the spectrum of energy density, i.e. the en-
ergy density per frequency, from a specific source. The shape of this spectrum
for a given source will make it distinguishable from other sources, and the peak
of the spectrum will indicate to us at which frequency we are most likely to
detect gravitational waves from that source.

5.2 The Gravitational Wave Energy-Momentum Tensor

In General Relativity, the energy-density occurs as the 00-component of the
energy-momentum tensor. Our first step in deriving an expression for the
energy-density of gravitational waves is thus finding the energy-momentum ten-
sor for gravitational waves. A derivation for this in the so-called shortwave
approximation is given in [14]. The derivation there, however, is done under
the assumption of considering the linearized Einstein equations in vacuum. For
gravitational waves in a cosmological setting this condition clearly is not sat-
isfied, there is nothing vacuum-like about the energy-momentum tensor from
(81). We will thus have to provide some additional arguments as to why the
final result for the energy-momentum tensor for gravitational waves from [14] is
still valid in a FLRW universe.
Let us start by imagining what would happen if we expand both sides of the
Einstein equations (3) to orders in a perturbation of the metric. Letting δ2

denote second order in the perturbation, we have:

Ḡµν + δGµν + δ2Gµν + h.o. = 8πG(T̄µν + δTµν + δ2Tµν + h.o.). (133)

Assuming we found a solution to the linear equations (δGµν = δTµν), and
ignoring higher than second order, we are left with:

Ḡµν + δ2Gµν = 8πG(T̄µν + δ2Tµν). (134)

Recall that up to now we have neglected any non-linear effects of the perturba-
tions on themselves, and we do not want to start doing this now. Assuming that
the perturbations are small and vary over small scales compared to the back-
ground curvature, we can save ourselves from having to consider self-coupling
to higher orders by averaging over a volume of space at the scale of a few wave-
lengths, we denote this by 〈·〉 and pick a specific way of averaging later. This
allows us to split δ2Gµν in a smooth part, which tells us how the gravitational
waves perturb the background energy-momentum, and a fluctuating part, which
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tells us how the perturbations effect themselves. That is, we have:

〈Ḡµν + δ2Gµν〉 = 8πG(T̄µν + T (GW)
µν )

Ḡµν + 〈δ2Gµν〉 = 8πG(T̄µν + T (GW)
µν )

〈δ2Gµν〉 = 8πGT (GW)
µν . (135)

Here we identify T (GW )
µν with the energy-momentum tensor due to gravitational

waves. That is, we neglect the second order effect of the gravitational waves on
the background energy-momentum tensor, and see (135) as a means of calcu-
lating how much energy-momentum the gravitational waves generate. In order
to evaluate δ2Gµν one needs to find the second order perturbation of the Ricci-
tensor. The amount to algebra involved in this calculation is tremendous, and
we will not present the derivation here. Instead we will just state the result for
δ2Rµν found in [14], and take it from there. We thus start from:

δ2Rµν =
1
2

(
1
2
∇̄µhαβ∇̄νhαβ + hαβ(∇̄µ∇̄νhαβ + ∇̄α∇̄βhµν − ∇̄ν∇̄βhαµ

− ∇̄µ∇̄βhνα) + ∇̄βh αν (∇̄βhµα − ∇̄αhµβ)− (∇̄βhαβ −
1
2
∇̄αhββ)

× (∇̄νhµα + ∇̄µhνα − ∇̄αhµν)), (136)

where all covariant derivatives are just the ones associated to the background
metric, and the indices are raised and lowered using the background metric.
In this expression no choice of gauge has been made yet. We thus start by
imposing the same conditions as we did before, given by (117). In equation
(136), however, we still have just the covariant derivatives, and not the partials
as in the condition ∂ihij = 0 from (117). It is therefore more convenient to
first show that, in the case of a FLRW background metric, the three conditions
from (117) together imply the condition ∇αhαβ = 0, and plug this into (136).
We start by computing the contraction of the perturbations with a covariant
derivative:

∇αhαβ = ∂αhαβ − gαλΓκαλhκβ − gαλΓκβλhκα. (137)

Now we can start eliminating terms: ∂ihij = 0 and h0ν = 0 together imply
∂αhαβ = 0 and looking at (94) we see that because the Christoffel symbols in
the second term are forced by the diagonality of the metric in front to have
identical lower indices they will only be non-zero for κ = 0, but then h0β = 0
sets this term to zero. This leaves us with, splitting the sums in 0 components
and latin indices:

∇αhαβ = −g0λΓκβλh0λ − gi0Γκβ0hκi − gijΓ0
βjh0i − gijΓkβjhki, (138)

where now the first and third terms vanish by the transverse condition on hµν ,
the second by diagonality of gµν , and the last term yields, using (94) for the
Christoffel symbols:

∇αhαβ = −aȧgijhij = −aȧhii = 0. (139)

Plugging this in to (136), together with the conditions from (117):

δ2R(TT )
µν =

1
2

(
1
2
∇̄µhαβ∇̄νhαβ + hαβ(∇̄µ∇̄νhαβ + ∇̄α∇̄βhµν − ∇̄ν∇̄βhαµ

− ∇̄µ∇̄βhνα) + ∇̄βh αν (∇̄βhµα − ∇̄αhµβ)), (140)

27



Taking the trace to find the Ricci-scalar:

δ2R(TT ) = gµνδ2R(TT )
µν − hµνδR(TT )

µν

=
1
2

(
1
2
∇̄µhαβ∇̄µhαβ + hαβ(∇̄µ∇̄µhαβ − 2∇̄µ∇̄βhαµ)

+ ∇̄βhµα∇̄βhµα − ∇̄βhµα∇̄αhµβ)

=
1
2

(
3
2
∇̄µhαβ∇̄µhαβ + hαβ(∇̄µ∇̄µhαβ − 2∇̄µ∇̄βhαµ)

− ∇̄βhµα∇̄αhµβ). (141)

Now we proceed with taking the average. It can be shown [14] that for an
averaging the following holds up to the order we are considering:

〈hαβ∇µ∇νhρσ〉 = 〈hαβ∇ν∇µhρσ〉 = −〈∇µhαβ∇νhρσ〉. (142)

Using this, we get for the average of the Ricci-tensor, plugging in gauge condi-
tions wherever we can:

〈δ2R(TT )
µν 〉 =

1
2
〈1
2
∇̄µhαβ∇̄νhαβ − ∇̄µhαβ∇̄νhαβ − ∇̄αhαβ∇̄βhµν

+ ∇̄βhαβ∇̄νhαµ + ∇̄βhαβ∇̄µhνα + (∇̄β∇̄βh αν )hµα
+ (∇̄β∇̄αh αν )hµβ〉

=
1
2
〈−1

2
∇̄µhαβ∇̄νhαβ + (∇̄β∇̄βh αν )hµα〉, (143)

and for the average of the Ricci-scalar:

〈δ2R(TT )〉 =
1
2
〈−3

2
hαβ∇̄µ∇̄µhαβ + hαβ∇̄µ∇̄µhαβ − 2hαβ∇̄β∇̄µhαµ

− ∇̄β∇̄αhµαhµβ〉

= −1
4
〈hαβ∇̄µ∇̄µhαβ〉. (144)

In order to give full insight into the calculations needed to find the equations of
motion (132), we took the low-brow route of computing directly, also because
we were not working in a vacuum. In [14] the vacuum case is considered, which
gives for the propagation equation in the transverse traceless gauge:

∇µ∇µhij = 0. (145)

Following [14] one would then insert this into equations (143) and (144) to give
a simpler form for T (GW)

µν . The equation we have for freely propagating waves is
however �h̃ij = 0. The error made in using this to assume (145), however, is of
the order of magnitude of the unperturbed Riemann-tensor multiplied by hij ,
which, inside the average, can be ignored by the same arguments used to justify
(142). Proceeding with plugging (145) into (144) sets 〈δ2R(TT )〉 = 0, and we
thus get for 〈δ2Gµν〉, in the case of freely propagating waves:

〈δ2Gµν〉 = 〈δ2R(TT )
µν 〉 = −1

4
〈∇̄µhαβ∇̄νhαβ〉. (146)

We thus get from (135) for the energy-momentum tensor of freely propagating
gravitational waves in the transverse-traceless gauge:

T (GW)
µν =

−1
32πG

〈
∇̄µhαβ∇̄νhαβ

〉
. (147)
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5.3 Energy Density in FLRW-Universe

With equation (147) in hand, we can give an expression for the energy density
due to gravitational waves, even though it will cost us doing a little algebra.
Recall that the energy density is the 00-component in the energy-momentum
tensor, so:

ρgw =
−1

32πG
〈∇̄0hαβ∇̄0h

αβ〉

=
−1

32πG
〈(ḣαβ − Γ̄λ0αhλβ − Γ̄λ0βhλα)(ḣαβ + Γ̄α0κh

κβ + Γ̄β0κh
κα)〉

=
−1

16πG
〈1
2
ḣαβḣ

αβ + ḣαβΓ̄α0κh
κβ − Γ̄λ0αhλβḣ

αβ − Γ̄λ0αhλβΓ̄α0κh
κβ

− Γ̄λ0αhλβΓ̄β0κh
κα〉. (148)

We can clean this up by realizing that the only non-zero components of the
Christoffel symbols are those with two latin indices and one index zero, and
h0i = 0, and that hµν = −ḡµβ ḡναhβα, thus that hij = − 1

a4hij , and ḣij =
4ȧ
a5 hij − 1

a4 ḣij . This cancels the ḣij parts of the second and the third term:

− 1
a4
ḣabΓa0khbk +

1
a4

Γl0ahlbḣab = 0, (149)

leaving us with:

ρgw =
1

16πG
〈1
2
ḣabḣ

ab − 4ȧ
a5

Γ̄j0ahjbhab − Γ̄j0ahjbΓ̄
a
0kh

kb − Γ̄j0ahjbΓ̄
b
0kh

ka〉. (150)

Plugging in the explicit expression for the Christoffel symbols (94) and imme-
diately performing the summation to get rid of the Kronecker delta’s we get:

ρgw =
1

16πG
〈 1
2a4

ḣabḣab −
2ȧ
a5
ḣabhab +

4ȧ2

a6
habhab −

ȧ2

a6
habhab −

ȧ2

a6
habhab〉

=
1

16πG
〈 1
2a4

ḣabḣab −
2ȧ
a5
ḣabhab +

2̇a
2

a6
habhab〉. (151)

Better, but still not very nice. If we now define h̃ab by hab = a2h̃ab (so ḣab =
2ȧah̃ab + a2 ˙̃

hab), like in section 4.2, we can simplify this some more:

ρgw =
1

16πG
〈 1
2a4

(4ȧ2a2h̃abh̃ab + 4ȧa3 ˙̃
habh̃ab + a4 ˙̃

hab
˙̃
hab)−

4ȧ2

a2
h̃abh̃ab

− 2ȧ
a

˙̃
habh̃ab +

2ȧ2

a2
h̃abh̃ab〉

=
1

32πG
〈 ˙̃hab ˙̃

hab〉. (152)

This is a rather satisfying result, it expresses the energy density of a gravita-
tional wave in terms of an average over its time derivatives, which is a doable
calculation.1

1Every article I have seen so far just quotes result (152), sometimes even with reference to
[14], without mentioning any simplifications made. I find this a bit strange, and have tried to
explain here as best I can how the result here is related to formula (35.70′) in [14].
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5.4 Energy-Density Spectrum

Now that we have found an expression for ρgw, we can calculate the energy
density spectrum for the gravitational waves. Because we have been redefining
how we represent the perturbations, our notation got a bit messy. So, as a
reminder, we define h̃µν by:

gµνdx
µdxν = −dt2 + a2(t)(δij + h̃ij)dxidxj , (153)

with h̃0ν = ∂ih̃ij = h̃ii = 0.
In order to be able to evaluate (152), we need to specify what we mean by
averaging over a few wavelengths2. In agreement with [6] we take the average
to be:

〈f(x)〉V =
1
V

∫
V

d3xf(x), (154)

where, in the case of the perturbations, we take the volume V we are integrating
over to be much larger than the wavelengths.
With these definitions, we start by plugging in the spatial Fourier transform for
the perturbations,

h̃ij(t,x) =
∫

d3k

(2π)
3
2
h̃ij(t,k)e−ik·x, (155)

and the definition for the average (154) into equation (152):

ρgw =
1

32πGV

∫
V

d3x
∫

d3k

(2π)
3
2

∫
d3k′

(2π)
3
2

˙̃
hij(t,k) ˙̃

hij(t,k′)e−i(k+k′)·x

=
1

32πGV

∫
d3k

∫
d3k′ ˙̃hij(t,k) ˙̃

hij(t,k′)δ(3)(k + k′)

=
1

32πGV

∫
d3k ˙̃

hij(t,k) ˙̃
hij(t,−k)

=
1

32πGV

∫
d3k ˙̃

hij(t,k) ˙̃
h∗ij(t,k) (156)

Since the range of frequencies gravitational waves that can plausibly be detected
([9]) is so large, it is convenient to express the energy-density spectrum in terms
of the logarithmic frequency interval: ( dρgw

d(ln k) ). To get there, it would be nice
if we could express ρgw in terms of an integral over ln(k). It turns out we can.
First, we switch to spherical coordinates (k, θ, φ):∫ ∞

∞
d3k =

∫ ∞
0

dkk2

∫ π

0

dθ

∫ 2π

0

dφ sin θ =:
∫
dkk2dΩ. (157)

Observing we have d(ln k) = dk
k , and plugging in to (156):

ρgw =
1

32πGV

∫
d(ln k)dΩk3 ˙̃

hij(t,k) ˙̃
h∗ij(t,k), (158)

Differentiating with respect to the logarithm of k is now an easy matter, leaving
us with:

dρgw

d(ln k)
=

k3

32πGV

∫
dΩ˙̃
hij(t,k) ˙̃

h∗ij(t,k). (159)

2In [14] one finds much more elaborate schemes for taking the average of a tensor field than
we will use here. No justification is given for the averaging schemes we will consider here in
the articles I found them in ([6] and [4]).
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5.5 Spectrum for Creation during Radiation Era

The final goal of this thesis is to apply the theory developed so far to the
case of bubble collisions during phase transitions that occurred after inflation,
that is, during the radiation era. We are interested in how the energy-density
spectrum depends on the energy-momentum tensor associated with the bubble-
collisions. In order to calculate this, we need to solve the equation of motion
(132) for the period the source is active, and the propagation equation ((132)
with Π(TT )

ij = 0) for after the source stopped emitting gravitational waves, and
stitch the two solutions together, and put what we find into (159), and all of this
during radiation era. Solving in under the assumption the universe is radiation
dominated is rather convenient, for the equation of motion simplifies quite a lot,
and with the the associated Green’s function.
In the notation from the previous paragraph equation (132) becomes:

16πGa2Π(TT)
ij = −a2�h̃ij

= −∂i∂ih̃ij + a2¨̃
hij + 3aȧ ˙̃

hij . (160)

In order not to have to carry around a2 all the time, we switch back to the
transverse traceless part of the energy-momentum tensor instead of Π(TT)

ij :

TTT
ij = a2Π(TT)

ij (161)

Fourier transforming (155) gives us, with the definition k2 = k2 for the comoving
wave number k:

16πGT (TT)
ij (k) = k2h̃ij(k) + a2¨̃

hij(k) + 3aȧ ˙̃
hij(k). (162)

In terms of conformal time this becomes:

16πGT (TT)
ij (k) = k2h̃ij(k) + h̃′′ij(k) + 2

a′

a
h̃′ij(k). (163)

With the definition ĥij = ah̃ij (thus h̃′ij = ĥ′ij
a −

ĥija
′

a2 and h̃′′ij = ĥ′′ij
a −

2ĥ′ija
′

a2 −
ĥija

′′

a2 + 2ĥija
′2

a3 ) we get:

16πGT (TT)
ij (k) =

k2ĥij(k)
a

+
ĥ′′ij(k)
a
−

2ĥ′ij(k)a′

a2
− ĥij(k)a′′

a2

+
2ĥij(k)a′2

a3
+

2ĥ′ij(k)a′

a2
− 2ĥij(k)a′2

a3

=
k2ĥij(k)

a
+
ĥ′′ij(k)
a
− ĥij(k)a′′

a2

16πGaT (TT)
ij (k) = (k2 − a′′

a
)ĥij(k) + ĥ′′ij(k). (164)

If we now assume radiation domination3 ( ȧa = 1
2t ) we get for a′′

a :(
ȧ

a

)·
=
ä

a
− ȧ2

a2
=
−1
2t2

, (165)

3In [6], radiation domination is not assumed, because there the case of preheating after
inflation is considered, and alternative arguments are presented to neglect the a′′/a term.
For the treatment of gravitational radiation from bubble collisions during phase transitions,
however, radiation domination is a valid assumption for most early-universe phase transitions.
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so:
ä

a
=
−1
2t2

+
1

4t2
=
−1
4t2

, (166)

and:

a′′

a3
=

ȧ2

a2
+
ä

a

=
1

4t2
− 1

4t2
= 0, (167)

so, since a is finite, we get for the equation of motion (164):

16πGaT (TT)
ij (k) = k2ĥij(k) + ĥ′′ij(k), (168)

which is just a simple wave equation that can be solved by using a Green’s
function. Under the assumption that before the time the source started radiating
at time τi there were no gravitational waves present (hij(τi) = h′ij(τi) = 0), this
Green’s function for a given k 6= 0 is given by:

G(τ − τ ′) =
1
k

sin(k(τ − τ ′)), (169)

So we can construct the solution:

ĥij(τ,k) =
16πG
k

∫ τ

τi

dτ ′ sin(k(τ − τ ′))a(τ ′)T (TT)
ij (τ ′,k). (170)

At some time τf the source will stop radiating, or at least the radiation will
become negligible. Then we need to solve equation (168) without the source,
and match the solution with h(τf ,k) from equation (170). The solutions for
(168) without a source (so τ ≥ τf ) are simply plane waves:

ĥij(τ,k) = Aij(k) sin(k(τ − τ ′)) +Bij(k) cos(k(τ − τ ′)). (171)

We can determine Aij(k) and Bij(k) by demanding the solution for τ ≤ τf
matches the solution for τ ≥ τf , that is:

Bij(k) =
16πG
k

∫ τf

τi

dτ ′ sin(k(τf − τ ′))a(τ ′)T (TT)
ij (τ ′,k). (172)

And demanding that the derivatives also match:

Aij(k) =
1
k

d

dτ
|τ=τf

16πG
k

∫ τ

τi

dτ ′ sin(k(τ − τ ′))a(τ ′)T (TT)
ij (τ ′,k)

=
16πG
k2

(
0 + k

∫ τf

τi

dτ ′ cos(k(τf − τ ′))a(τ ′)T (TT)
ij (τ ′,k)

)
=

16πG
k

∫ τf

τi

dτ ′ cos(k(τf − τ ′))a(τ ′)T (TT)
ij (τ ′,k). (173)

To compute the energy-density spectrum, we want to plug this into equation
(159). This equation, however, is in terms of cosmic time and hij . Fortunately,
if we look at (152) where we started from,

ρgw =
1

32πG
〈ḣabḣab〉, (174)
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and rewrite this in terms of conformal time and ĥij , using ḣij = − a′

a3 ĥij+ 1
a2 ĥ
′
ij ,

we get:

ρgw =
1

32πGa4
〈a
′2

a2
ĥij ĥij −

2a′

a
ĥij ĥ

′
ij + ĥ′ij ĥ

′
ij〉. (175)

In terms of the Hubble-parameter (H = a′

a2 ):

ρgw =
1

32πGa4
〈a2H2ĥij ĥij − 2aHĥij ĥ′ij + ĥ′ij ĥ

′
ij〉. (176)

We are interested in the smaller wavelengths (much smaller than the Hubble
radius), with k

a � H, and in this approximation the first and the second term
are much smaller than the last. We thus approximate:

ρgw =
1

32πGa4
〈ĥ′ij ĥ′ij〉+O(k/(aH)), (177)

and we see that the previous results carry over, with as only difference a factor
of 1

a4 . Because all radiation energy-densities dilute as 1
a4 (three powers of 1

a for
spatial dilution, and one for the redshift), and we can treat gravitational waves
as radiation, it makes sense to define the quantity Sk by(

dρgw

d(ln k)

)
=
Sk
a4
. (178)

We thus get:

Sk =
k3

32πGV

∫
dΩĥ′ij(t,k)ĥ∗′ij(t,k). (179)

Our next step is to determine ĥ′ij(t,k)ĥ∗′ij(t,k). We make an another simplifying
assumption: we are not interested in the energy-density spectrum at the level
of the oscillations, that is, we average over one period of oscillation T = 2π

k :

〈ĥ′ij(t,k)ĥ∗′ij(t,k)〉T =
k

2π

∫ 2π
k

0

dtĥ′ij(t,k)ĥ∗′ij(t,k). (180)

We have:

ĥ′ij(τ,k) = kAij(k) cos(k(τ − τf ))− kBij(k) sin(k(τ − τf )), (181)

so:

ĥ′ij(τ,k)ĥ∗′ij(τ,k) = k2
∑
i,j

(|Aij(k)|2 cos2(k(τ − τf ))

+ |Bij(k)|2 sin2(k(τ − τf ))
+ (A∗ij(k)Bij(k) +Aij(k)B∗ij(k))
× cos(k(τ − τf )) sin(k(τ − τf ))). (182)
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Computing the integral gives zero for the cross-terms, and the squares of both
the sine and the cosine integrate to π

k . This leaves us with:

〈ĥ′ij(τ,k)ĥ∗′ij(τ,k)〉T =
k2

2

∑
i,j

(
|Aij(k)|2 + |Bij(k)|2

)
=

(16πG)2

2

×
∑
ij

(|
∫ τf

τi

dτ ′ cos(k(τf − τ ′))a(τ ′)T (TT)
ij (τ ′,k)|2

+ |
∫ τf

τi

dτ ′ sin(k(τf − τ ′))a(τ ′)T (TT)
ij (τ ′,k)|2) (183)

Using cos(k(τf−τ ′)) = cos(kτf ) cos(kτ ′)+sin(kτf ) sin(kτ ′) and sin(k(τf−τ ′)) =
− cos(kτf ) sin(kτ ′) + sin(kτf ) cos(kτ ′), we can take the cos(kτf ) and sin(kτf )
factors out of the integrals, which gives two times cos2(kτf ) + sin2(kτf ) = 1,
one for sin(kτ ′) and one for cos(kτ ′) in the integral. Plugging this into (179),
we get for Sk:

Sk =
4πGk3

V

∫
dΩ
∑
i,j

(|
∫ τf

τi

dτ ′ cos(kτ ′)a(τ ′)T (TT)
ij (τ ′,k)|2

+ |
∫ τf

τi

dτ ′ sin(kτ ′)a(τ ′)T (TT)
ij (τ ′,k)|2). (184)

We have thus found an expression for the logarithmic energy-density spectrum
of gravitational waves created during the radiation era in terms of the energy-
momentum tensor of its source. There is an alternative way of defining the aver-
age ([6]), which is particularly convenient when dealing with stochastic sources
as we will see in the next chapter. This method is called the ensemble average,
which is an average over the Fourier components of ĥij , taking into account
interactions between the various components, that is, we define:

〈ĥ′ij(τ,x)ĥ′ij(τ,x)〉 =
∫

dk
(2π)3/2

∫
dq

(2π)3/2
〈ĥ′ij(τ,k)ĥ∗′ij(τ,q)〉e−i(k−q)·x. (185)

Note that with our previous averaging scheme we got (see (156)):

〈ĥ′ij(τ,x)ĥ′ij(τ,x)〉 =
1
V

∫
dkĥ′ij(τ,k)ĥ′∗ij(τ,k), (186)

and we have the following relation between the two averages (by the ergodic
assumption the ensemble average should be equivalent to the space average):

1
V

∫
dkĥ′ij(τ,k)ĥ′∗ij(τ,k) =

1
(2π)3

∫
dk
∫
dq〈ĥ′ij(τ,k)ĥ∗′ij(τ,k)〉e−i(k−q)·x

(187)
Now we define the unequal time correlator for the tensor anisotropic stress in
Fourier space Π(k, τ, ζ) by:

〈T (TT)
ij (τ,k)T ∗(TT)

ij (ζ,q)〉 = δ(k− q)Π(k, τ, ζ), (188)
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where we note that this definition only makes sense with the assumption that
the polarization of the gravitational waves is of no interest to us, thus assuming
homogeneity and isotropy in Fourier space (see [4]). Combining the above,
taking the tensor to be averaged over to be T (TT)

ij (τ,k), we get:

1
V

∫
dkT (TT)

ij (τ,k)T ∗(TT)
ij (ζ,k) =

1
(2π)3

∫
dkΠ(k, τ, ζ), (189)

where we already performed the q integral to get rid of the delta function. In
equation (189) we are dealing with unequal times, where in (187) we had equal
times. This, however, is of no consequence: the definitions in (185) and (186)
and thus the result in (187) also make sense for unequal times.
The finishing touch in the discussion of this alternative way of averaging is of
course expressing Sk in terms of it. If we try to do this directly from (184) we
find we would need a relation between T

(TT)
ij (τ,k)T ∗(TT)

ij (ζ,k) and Π(k, τ, ζ),
where (189) is only a relation of integrals. However, looking at the calculations
we did to find Sk, we see that setting

1
V
T

(TT)
ij (τ,k)T ∗(TT)

ij (ζ,k) =
1

(2π)3
Π(k, τ, ζ) (190)

in expression (184) for Sk just corresponds with using the identity (189) before
we switch to spherical coordinates and differentiate with respect to ln(k) in the
computations for Sk. Using (190) together with the familiar cos(kτ ′) cos(kζ) +
sin(kτ ′) sin(kζ) = cos(kτ ′ − kζ) we can rewrite (184) as:

Sk =
4πGk3

V

∫
dΩ
∫ τf

τi

dτ ′
∫ τf

τi

dζa(τ ′)a(ζ)T (TT)
ij (τ,k)T ∗(TT)

ij (ζ,k)

× (cos(kτ ′) cos(kζ) + sin(kτ ′) sin(kζ))

=
2Gk3

π

∫ τf

τi

dτ ′
∫ τf

τi

dζ cos(kτ ′ − kζ)a(τ ′)a(ζ)Π(k, kτ ′, kζ),

(191)

where we performed the angular integral to get 4π.
A simplification we can make is to assume that the source is active for a time
much shorter than the Hubble time. We can then neglect the expansion of the
universe during the time the source is active, and take the scale factor in the
above integral to be constant with value a∗:

Sk =
2Gk3a2

∗
π

∫ τf

τi

dτ ′
∫ τf

τi

dζ cos(kτ ′ − kζ)Π(k, kτ ′, kζ). (192)

This is the expression for Sk we will use to compute the spectrum for bubble
collisions during phase transitions.

5.6 Energy Density Spectrum Today

With equation (184) in hand, we can proceed to derive an expression for the
spectrum per logarithmic frequency interval of the abundance of gravitational
wave energy-density today. Because the gravitational wave energy-density dis-
sipates as radiation we can do this by just considering the evolution of of the
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scale factor a. In general, the abundance of energy-density for a given species l
in cosmology is given in the form:

h2Ωl = h2 ρl

ρc
, (193)

where h2 is the astronomical length scale and ρc is the critical energy density.
We now define Ωgw(f) to be the spectrum of the gravitational wave energy-
density today:

h2 dΩgw(f)
d ln(f)

=
(
h2

ρc

dρgw

d ln(f)

)
0

, (194)

with f denoting the physical frequency today, and the subscript 0 reminding us
we are evaluating the relevant quantities today. The wave-vector k we have in
equation (184) is conjugate to the vector x, and this a vector in the so-called
comoving frame. So k2 in (184) is the square of the comoving wave number, and
we need to take out scale factor to obtain the physical quantity. The physical
wave number today is then given by k0 = k

a0
and the frequency by f = k

2πa0
.

We thus get for the spectrum of gravitational wave energy-density today:

h2 dΩgw

d ln(k)
=
h2

ρc

Sk
a4

0

. (195)

This a neat formula, but does not tell us very much. This is because a0 depends
on our choice of reference, and is not some intrinsic measurable (or computable)
quantity. The way to solve this is to compare the scale factor at the end of the
gravitational wave emission to the scale factor today, and describe its evolution
in terms of quantities that are measurable or can be found by some model. For
the ratio between the scale factor at the end of emission af and the scale factor
today the following is obtained:

1
a0

=
(
gf

g0

)− 1
12
(
ρrad0

ρf

) 1
4 1
af
, (196)

where is ρf the total energy-density at the end of the emission. The g’s denote
effectively massless degrees of freedom, we take for the ratio g∗

g0
= 100. Lastly,

ρrad0 denotes the radiation energy-density today. Assuming as above that the
graviational waves are emitted during radiation domination, we can assume
ρf = ρf

rad and we get for (195):

h2 dΩgw

d ln(k)
=

h2

ρca4
f

(
gf

g0

)− 1
3 ρrad0

ρf
rad

Sk(τf). (197)

The nice thing about this expression is that all the quantities in it can be
measured or modeled for. We have for instance Ωrad0h

2 = h2ρrad0
ρc

= 4.3× 10−5.
We now have the general tools needed to compute the energy density spectrum
of gravitational waves from bubble collisions.
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6 Gravitational Waves from Bubble Collisions

6.1 Motivation

According to the Standard Model of cosmology, phase transitions occurred after
the Big Bang, when the universe was reheated and thermalized after inflation
and started cooling down due to the regular expansion. In this dense and hot
state the fundamental forces are thought to have had more symmetries than they
have now. An important example of such a phase transition is the electro-weak
phase transition, which could be a first-order phase transition [15], occurring
at a scale of T ∼ 100GeV, around 10−8 seconds after the Big Bang. During
first-order phase transitions, bubbles of the new phase are formed throughout
the space, which then rapidly expand and collide. These collisions will break
spherical symmetry of the expansion of the bubbles. Because the bubbles form
randomly, this symmetry breaking occurs anisotropically, thus giving rise to an
non-zero anisotropic stress, which generates gravitational waves.
This generation of gravitational waves is of more than purely theoretical inter-
est, because gravitational waves are barely attenuated during their propagation
through the universe, and can thus give us a view of the very early universe.
In the specific case of the electro-weak symmetry breaking the characteristic
frequency for the gravitational waves generated by bubble collisions during this
phase transition is in the range that will be covered by LISA (10−4-10−2 Hz).
Because the gravitational waves encode information on both the strength of
phase transition and the temperature at which it takes place, it is possible that
LISA could provide information that can help us understand this phase transi-
tion.
The energy density spectrum for gravitational waves generated by bubble col-
lisions can be computed using the formula (197). The hard part of this cal-
culation is determining the specific form of the anisotropic stress tensor. This
uses quite a lot of hydrodynamics, and can only be treated in little detail in
this text. We will limit ourselves to discussing what the relevant parameters for
the bubble collisions are, and how they enter the expression for the anisotropic
stress. We will have a look at how the energy density spectrum depends on
these parameters, and discuss the chances for actually detecting gravitational
waves from bubble collisions in early universe phase transitions, using [4] as our
main source. The reader should be aware that this particular subject is a field
of ongoing research, and the method of modeling presented here is just one of
many. The advantage of the model presented here is that the calculations are
all analytic, giving a lot insight into the process that underlies the generation
of gravitational waves by bubble collisions, even if this specific model turns out
to be not entirely accurate.

6.2 Velocity Dependence

Before we look at a model for the bubble-collisions, we take a look at which
parameters we would want to extract from such a model. To find the energy
density spectrum, we need to know the energy-momentum tensor. We assume
it to have perfect fluid form:

Tµν = (ρ+ p)UµUν + pgµν (198)
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In the end we will only be interested in the anisotropic stress part, so it suffices
to look at the spatial, off-diagonal part of the energy-momentum tensor. That
is, we look only at the spatial components of the energy-momentum tensor
(suppressing the gµν factor since it is diagonal anyway):

Tab(x, τ) = (ρ+ p)Ua(x, τ)Ub(x, τ)
= (ρ+ p)γ2va(x, τ)vb(x, τ), (199)

where γ2 = 1/(1 − v2) is the gamma factor. For simplicity, the spatial de-
pendence of ρ(τ) + p(τ) = w(τ) and γ is ignored and Fourier transforming we
get:∫

d3k

(2π)
3
2
Tab(k, τ)e−ik·x =

w(τ)
1− v2(τ)

∫
d3k

(2π)
3
2

∫
d3p

(2π)
3
2
va(k, τ)vb(p, τ)

× e−ix·(k+p)

=
w(τ)

1− v2(τ)

∫
d3k

(2π)
3
2

∫
d3p

(2π)
3
2
va(k− p, τ)vb(p, τ)

× e−ix·k. (200)

Using orthogonality and completeness of the Fourier basis yields:

Tab(k, τ) =
w(τ)

1− v2(τ)

∫
d3p

(2π)
3
2
va(k− p, τ)vb(p, τ). (201)

More specifically, looking at expression (191), we see that we need to find the
unequal-time correlator Π(k, τ, ζ). To compute the correlator, we need to find
〈T (TT)
ij (k, τ)T ∗(TT)

ij (q, ζ)〉. We know from equation (117):

T
(TT)
ij (k, τ) = (PilPjm −

1
2
PijPlm)Tlm(k, τ), (202)

where we have Pij = δij − kikj . For future convenience of notation we define:

PabcdBab(k)Bcd(q) = (PiaPjb−
1
2
PijPab)(k)(PicPjd−

1
2
PijPcd)(q)Bab(k)Bcd(q),

(203)
for Bab(k) a tensor. The expectation value of a product of transverse-traceless
parts is then related to that of a product of energy-momentum tensors by:

〈T (TT)
ij (k, τ)T ∗(TT)

ij (q, ζ)〉 = (PiaPjb −
1
2
PijPab)(k)(PicPjd −

1
2
PijPcd)(q)

× 〈Tab(k, τ)T ∗cd(q, ζ)〉
= Pabcd(k,q)〈Tab(k, τ)T ∗cd(q, ζ)〉. (204)

To find the correlator we thus need to compute the expectation value of a
product of energy-momentum tensors:

〈Tab(k, τ)T ∗cd(q, τ)〉 =
w(τ)w(ζ)

(1− v2(τ))(1− v2(ζ))

∫
d3p

(2π)
3
2

∫
d3h

(2π)
3
2

×〈va(k− p, τ)vb(p, τ)vc(q− h, ζ)vd(h, ζ)〉.(205)

38



If we approximate this by using Wick’s theorem (this theorem is only valid
for Gaussian distributions, and the velocity distribution will probably not be
Gaussian, but we have to find a way to approximate the four-point correlators),
we can reduce the expectation value of the product of four velocities to a sum
over products of expectation values of the product of two velocities:

〈va(k− p, τ)vb(p, τ)vc(q− h, ζ)vd(h, ζ)〉 =
〈va(k− p, τ)vb(p, τ)〉〈vc(q− h, ζ)vd(h, ζ)〉

+〈va(k− p, τ)vc(q− h, ζ)〉〈vb(p, τ)vd(h, ζ)〉
+〈va(k− p, τ)vd(h, ζ)〉〈vb(p, τ)vc(q− h, ζ)〉. (206)

Note that the first term in this expression is just the product of the expectation
values of the kinetic parts of two energy momentum tensors. To satisfy isotropy
this expectation value should vanish, leaving us with:

〈Tab(k, τ)T ∗cd(q, τ)〉 =
w(τ)w(ζ)

(1− v2(τ))(1− v2(ζ))

∫
d3kp

(2π)
3
2

∫
d3h

(2π)
3
2

× (〈va(k− p, τ)vc(q− h, ζ)〉〈vb(p, τ)vd(h, ζ)〉
+ 〈va(k− p, τ)vd(h, ζ)〉〈vb(p, τ)vc(q− h, ζ)〉).(207)

For convenience in the rest of the computations, we would like the space-time
correlator to appear in the expression for the correlation of the two energy
momentum tensors. Assuming statistical homogeneity, so the correlator depends
only on the distance between two points r, the correlator is given by:

Cab(r, τ, ζ) = 〈va(x, τ)vb(x + r, ζ)〉. (208)

In Fourier space we have the correlator Ĉab(k, τ, ζ) defined by:

〈va(k, τ)vb(q, ζ)〉 = δ(3)(k− q)Ĉab(k, τ, ζ), (209)

where the delta function is due to the statistical homogeneity and isotropy.
These two correlators are related by:

Ĉab(k, τ, ζ) =
∫

d3r

(2π)
3
2
Cab(r, τ, ζ)eik·r. (210)

Plugging (209) into equation (207) we get:

〈Tab(k, τ)T ∗cd(q, τ)〉 =
w(τ)w(ζ)

(1− v2(τ))(1− v2(ζ))

∫
d3p

(2π)
3
2

∫
d3h

(2π)
3
2

×(δ(3)(k− p− q + h)Ĉac(|k− p|, τ, ζ)
×δ(3)(p− h)Ĉbd(p, τ, ζ)
+δ(3)(k− p− h)Ĉad(|k− p|, τ, ζ)
×δ(3)(p− q + h)Ĉbc(p, τ, ζ)). (211)

Performing the h integral, eliminating some delta functions:

〈Tab(k, τ)T ∗cd(q, τ)〉 =
w(τ)w(ζ)

(1− v2(τ))(1− v2(ζ))
δ(3)(k− q)

∫
d3p

(2π)3

×(Ĉac(|k− p|, τ, ζ)Ĉbd(p, τ, ζ)
+Ĉad(|k− p|, τ, ζ)Ĉbc(p, τ, ζ)). (212)
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The remaining task is to determine the velocity profiles for the bubbles in the
phase transition. We will not discuss possible models for the velocity profile in
to much detail, but present the relatively simple model found in [4].

6.3 Velocity Correlators

To find the velocity correlators, we will construct a model for the fluid velocity in
a bubble during the phase-transition, following [4]. Here, however, we will not go
into the details of the hydrodynamics, and when talking about specific velocity
distributions we will always assume we are dealing with Jouget detonations. In
[4] the case of deflagrations is also treated, but we will not discuss them here.
The picture one should keep in mind when talking about bubbles is that of
two concentric, spherical, expanding shells, with inside the inner shell the new
phase with zero velocity, and between the two shells a non-zero velocity front
where the phase expands. The relevant parameters in this picture are the radii
of the shells and the velocities at which they expand. Because we are dealing
with relativistic fluids we have to be careful with specifying in which frame we
measure a certain velocity. We characterize the velocity of the outer shell, vout,
by the incoming velocity of the old phase into the shell in the frame of the outer
shell, and the velocity of the new phase fluid by the velocity at which the new
phase leaves the outer shell, in the frame of the outer shell, vin. In the case
of Jouget detonations the former velocity corresponds to the velocity at which
the bubble wall expands in the rest frame of the bubble center, vb = vout, and
the latter is equal to the sound speed, vin = cs, which is equal to 1/

√
3 for

relativistic fluids. Using time as parameter we can express both shell radii in
terms of the respective shell velocities. We have for the radius of the outer shell
R = voutt and for the inner shell radius rint = vintt. The relevant parameters
are shown in figure 4. For Jouget detonations we have vint = cs.
Ultimately, we will be interested in the velocity profile of the front between the

Figure 4: Velocities and radii in our model of a bubble with center x0. The
figure is from [4].
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two shells. It turns out to be convenient to consider this profile in the frame of
new phase fluid. Using a Lorentz transformation we get for the fluid velocity vf

near the outer shell in the frame of the bubble center:

vf =
vout − vin

1− voutvin
. (213)

For simplicity we assume the velocity to increase linearly as a function of the
distance to the bubble center at x0, and normalize it to reach vf at the outer
shell. The velocity profile is then given by:

va(x, t) =
{

vf
R (x− x0)a rint < |x− x0| < R
0 otherwise

}
. (214)

With this velocity profile, we can calculate the equal time velocity correlators
〈vi(x, t)vj(y, t)〉. We do not calculate the correlators for unequal times directly,
this computation is too complicated. Instead we calculate the correlators for
equal times, and use these to approximate the unequal time correlators. Note
that, even though here we will be focusing on the computation of the two point
correlators, we are calculating an approximation for four point correlators. This
is important to keep in mind, because we will take the two point correlator to
be non-zero if and only if x and y are in the same bubble’s non-zero velocity
front, and average over all possible positions for the bubble center. At first it
may seem as if this implies we will not be taking any collisions into account, col-
lisions will certainly involve correlations between velocities in different bubbles.
However, we do take these correlations into account: they appear in the four
point correlator as the product of two point correlations from different bubbles.
It would in fact be superfluous to try to calculate correlations between different
bubbles: averaging over all different positions for the bubble centers (a space
average) is by the ergodic assumption (ensemble averages are equivalent to space
averages, a customary assumption in cosmology) equivalent to an average over
several realizations for the center positions (an ensemble average), and with that
to an average over possible bubble configurations, and in this way we also take
overlapping bubbles (i.e. collisions) into account. Plugging the velocity profile
(214) into the equal time correlator we get:

〈vi(x, t)vj(y, t)〉 =
v2

f

R(t)2
〈(x− x0)i(y− x0)j〉, (215)

for x and y in the same bubble’s non-zero velocity front, and zero otherwise.
Write Vi for the volume of possible positions for x0 such that x and y are in
the same bubble’s non-zero velocity front. Since the first case above gives the
only non-zero contribution, we can calculate the correlator by calculating the
average of the product in the right hand side of (215) over all x0 ∈ Vi, and then
multiply by the probability of Vi actually containing a bubble center. Again
using the ergodic assumption, this is the same as the fraction of volume that Vi

occupies. For a point to be in Vi, it should be the center of a bubble containing
both x and y in its non-zero velocity front, and for that to happen it has to
be the center of a bubble containing x and y in the first place. The fraction of
volume filled by Vi is thus given by the fraction Vi occupies of the total volume
of points such that x and y are in the same bubble Vc, times the probability of
a point being in a bubble which is equal to the fraction of volume occupied by
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bubbles at time t, φ(t).
The correlator is then given by:

〈vi(x, t)vj(y, t)〉 = φ(t)
v2

f

VcR(t)2

∫
Vi

d3x0(x− x0)i(y− x0)j , (216)

where the Vi’s in the average and in the probability have canceled. The right
hand side in equation (216) involves the integral over Vi, which depends only on
the distance r = |x − y|, and the two parameters rint and R. The dependence
on the positions x and y separately vanishes, as we stated before, and we can
thus define:

Iij(r, rint, R) =
∫
Vi

d3x0(x− x0)i(y− x0)j , (217)

leading to:

〈vi(x, t)vj(y, t)〉 = φ(t)
v2
f

VcR2

∫
Vi

Iij(r, rint, R). (218)

To proceed from here, we have to evaluate (218) explicitly, and then Fourier
transform it to obtain the correlators in Fourier space. We will not present
these computations here. Instead we will have a look at convenient methods
for approximating the unequal time correlators. First we discuss a naive, but
physically transparent method, to get a feel for these approximations. Then we
present a more complicated but more accurate method.
The first method comes down approximating the value of the unequal time
correlator (208) by the value of the equal time correlator in the case that the
region of non-zero velocity at comoving time τ overlaps with that at comoving
time ζ, and by zero otherwise. The first step is to determine for what times
the regions of non-zero velocity overlap. Suppose that ζ ≥ τ . Just overlapping
then means that the inner boundary of the non-zero velocity shell at ζ equals
the outer boundary at τ . If we call ηin the time the bubble was formed, we can
express this as:

vout(τ − ηin) = vint(ζ − ηin). (219)

Solving this for the limiting time, and using Heaviside functions to set the
correlator to zero for all ζ larger than this time, we get for the correlator with
ζ ≥ τ (note that vout

vint
= R

rint
):

〈vi(x, τ)vj(y, ζ)〉 = 〈vi(x, τ)vj(y, τ)〉Θ(ζ − τ)Θ(
R

rint
(τ − ηin) + ηin − ζ), (220)

where we have arbitrarily set the correlator to its value at the smallest time.
Symmetrizing to account for the case τ > ζ:

〈vi(x, τ)vj(y, ζ)〉 = 〈vi(x, τ)vj(y, τ)〉Θ(ζ − τ)Θ(
R

rint
(τ − ηin) + ηin − ζ)

+ 〈vi(x, ζ)vj(y, ζ)〉Θ(τ − ζ)Θ(
R

rint
(ζ − ηin) + ηin − τ).

(221)

Even though this approximation gives a good feel for how one goes about ap-
proximating this kind of correlator, it turns out ([4]) that parts of the energy
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density spectrum turn out negative, where the spectrum should clearly be pos-
itive because of the |h′ij |2 on the left hand side of equation (183). We therefore
have to look for a different way to approximate the unequal time correlators. In
the calculation above we tried approximating the two point correlator for veloc-
ities. Instead of this, we can also try to approximate the unequal time correlator
for the product of energy-momentum tensors 〈Tab(k, τ)T ∗cd(q, τ)〉. Looking at
expression (204), together with definition (188), we see that this equivalent to
approximating the unequal time correlator Π(k, τ, ζ). We now lack the physical
context we had above to base our approximation on. Instead we will impose
the condition that longer wave lengths correlate over a longer time span, which
is just a manifestation of the general phenomenon that longer wave lengths at-
tenuate slower in a medium. We further assume that the correlation does not
last longer than about one wave length. To keep control of the effects of the
last assumption, however, we parameterize this assumption with a positive, di-
mensionless parameter xc, and assume correlation to last up to time separation
xc/k. In formula:

Π(k, τ, ζ) = Π(k, τ, τ)Θ(ζ − τ)Θ(
xc

k
− (ζ − τ))

+ Π(k, ζ, ζ)Θ(τ − ζ)Θ(
xc

k
− (τ − ζ)), (222)

where Π(k, τ, τ) is given by (combining equations (212) and (204) with definition
(188)):

Π(k, τ, τ) =
(

w(τ)
1− v2(τ)

)2 ∫
d3p

(2π)3
Pabcd

× (Ĉac(|k− p|, τ, τ)Ĉbd(p, τ, τ)
+ Ĉad(|k− p|, τ, τ)Ĉbc(p, τ, τ))

=
(

w(τ)
1− v2(τ)

)2
(
φ(τ)v2

f

VcR(τ)2

)2 ∫
d3p

(2π)6

∫
d3r

∫
d3sPabcd

× eir·(k−p)eis·p(Iac(r, rint, R)Ibd(s, rint, R)
+ Iad(r, rint, R)Ibc(s, rint, R)), (223)

where in the last identity we plugged in relation (210) for Ĉab(r, τ, ζ), with (218)
substituted in. After the appropriate integrals are performed, it turns out that
a reasonable value for xc is π/2 < xc < π. We will, however, not go into the
details of either the integration or the approximations.

6.4 Time Dependence

There is another important parameter on which the energy density spectrum
for gravitational waves from bubble collisions during phase transitions depends,
namely the duration of the phase transition. It is already present in equation
(184), where it simply came from the solution to equation (168). For the specific
case of bubble collisions during phase transitions however it turns out that the
form of Π(k, τ, ζ) also depends on the duration of the phase transition. It enters
quite directly via the function φ(t) in (216), the fraction of volume occupied by
the bubbles, and slightly more indirectly via the bubble radius R(t).
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We can express φ(t) in terms of the probability of its complement, that is, the
probability that at given point there has not been a phase transition. This, in
turn, we can express in terms of the rougher, thus easier to compute, quantity
I(η). This quantity is the fraction of volume occupied by bubbles at time η,
without considering any overlap. This gives for φ(η) ([4]):

φ(η) = 1− e−I(η). (224)

To compute I(η) we need the bubble nucleation rate, which is defined as Γ(η) =
M4a4

∗e
−S(η), with M the energy scale of the phase transition, and S(η) the

tunneling action. Expanding Γ(η) to first order in η around the time of the end
of the phase transition, ηfin yields:

Γ(η) ≈ Γ(ηfin)(1 + β̃(η − ηfin)) ≈ Γ(ηfin)eβ̃(η−ηfin), (225)

with the definition β̃ := −dS/dη|ηfin , and using the first order Taylor expan-
sion for the exponential. If we assume a constant velocity vb for the bub-
ble expansion, we see that a bubble formed at time η′ occupies a volume of
4π
3 r

3 = 4π
3 v

3
b (η − η′)3 at time η. The chance for a bubble to form at time η′ is

given by Γ(η′), so the fraction of volume occupied at time η by bubbles formed
at time η′ is given by 4π

3 Γ(η′)v3
b (η−η′)3, not considering overlap. The total vol-

ume occupied by bubbles at time η, without considering overlap and under the
assumption that the universe remains static throughout the phase transition, is
then given by integrating over all times η′ between the beginning of the phase
transition ηin and η:

I(η) =
4π
3

∫ η

ηin

dη′Γ(η′)v3
b (η − η′)3. (226)

Integrating this by parts, denoting by Γi(η) the ith indefinite integral of Γ(η),
gives:

I(η) =
4πvb

3

(
−
∫ η

ηin

dη′Γ1(η′)(−3(η − η′)2) + Γ1(η′)(η − η′)3|ηηin

)
, (227)

where we see that the boundary term vanishes, since Γ(η) = 0 for all η ≤ ηin,
thus Γ1(ηin) = 0, and η − η = 0. Repeatedly integrating by parts we see that
the boundary terms vanish in a similar fashion, until we are left with:

I(η) = 8πv3
bΓ4(η′)|ηηin ≈ 8π

v3
bΓ(ηfin)
β̃4

eβ̃(η−ηfin) ≈ 8π
v3

b

β̃4
Γ(η), (228)

where in the penultimate identity we plugged in the approximation from equa-
tion (225). We have thus found for φ(η), plugging everything into (224):

φ(η) ≈ 1− e−8π
v3b
β̃

4
Γ(η) ≈ 1− e−8π

v3b
β̃4 Γ(ηfin) exp(β̃(η−ηfin))

. (229)

We clean this up by noting that because all of space will have undergone the
phase transition at ηfin, we should have φ(ηfin) = 1. We can in principle deter-
mine the value of Γ(ηfin) from this. This, however, involves a limiting procedure,
which we circumvent by picking a number M such that exp(−M) ≈ 0 and defin-
ing ηfin by Γ(ηfin) = β̃4M/8πv3

b . We do the same for ηin, we pick a number m
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such that exp(−m) ≈ 1 and we define ηin by φ(ηin) = 1 − exp(−m), that is,
M exp(β̃(ηin − ηfin)) = m. This gives us a relation between the duration of the
phase transition and β̃:

ηfin − ηin = β̃−1 ln(
M

m
). (230)

Plugging in what we got so far into (229) this gives for φ(η):

φ(η) = 1− e−M exp(β̃(η−ηfin)). (231)

We have eliminated quite a lot of quantities already, but we still have M and β̃
left. It turns out we can eliminate M and give β̃ a convenient physical meaning
in our discussion of the time dependence of the bubble radius. We thus proceed
with trying to find an expression for R(η).
To evaluate the bubble radius, we make the simplification of not accounting for
the possibility of bubbles having different radii at a given time. This means we
are only interested in the mean bubble radius at time η. To find this mean we
look at the distribution of the number of bubbles with a given radius δ at η. To
find this distribution, consider the total number of bubbles at a given time η,
which have the radius up to δ = vb(η− ηδ), where ηδ is the nucleation time of a
bubble that has radius δ at time η, differentiating this cumulative distribution
with respect to δ will then yield the number of bubble with radius δ at a given
time η. The number of bubbles formed at a given time η′ is given by the rate
at which bubbles form Γ(η′) times the fraction of space where bubbles still can
form p(η′) := 1 − φ(η′), that is, the fraction of space that still has to undergo
the phase transition. The number of bubbles N(η) with radius up to δ at time
η is then given by:

N(η) =
∫ η

ηδ

dη′Γ(η′)p(η′). (232)

Differentiating this with respect to the δ at δ′ we obtain the distribution of
number of bubbles of radius δ′ at a given time η:

dN

dδ
|η = −Γ(ηδ)p(ηδ)

dηδ
dδ
|δ=δ′

= −Γ(ηδ)p(ηδ)
d

dδ
(η − δ

vb
)|δ=δ′

=
Γ(η′δ)p(η

′
δ)

vb
, (233)

where in the first identity we used the fundamental theorem of integral calculus,
and in the second we plugged in the relation between δ and ηδ stated above.
It can be shown (see [16]) that for each η this distribution has a maximum at
R̄(η) = vb

β ln I(η), which we take to be the mean bubble radius at time η, since
the distribution looks like a Gaussian4. Note that ln I(η) < 0 for I(η) < 1, this
would give the unphysical result of a negative bubble radius. To get rid of this,
we set R̄(η) to zero for all η < η̄, where η̄ is such that I(η̄) = 1:

R̄(η) =
{

0 for ηin < η < η̄
vb
β ln I(η) for η̄ < η < ηfin

}
. (234)

4The assertion that the maximum and the mean coincide is made in the caption of figure
5 in [16], but no justification is given. The argument given here is an educated guess.
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Since in our treatment we assume bubbles to be spherically expanding at con-
stant velocity, we are only evaluating times much later than the bubble nucle-
ation. So we might just as well identify ηin ≡ η̄ in our evaluations.
We still want to eliminate M from (231), we can do this by noting that I(η̄) = 1
implies 1 = M exp(β(η̄− ¯ηfin)), and with the identification ηin ≡ η̄ this becomes:

lnM = β̃(ηfin − ηin). (235)

We can thus rewrite (228) as:

I(η) = Meβ̃(η−ηfin)

= eβ̃(η−ηfin)+lnM

= eβ̃(η−ηfin+ηfin−ηin). (236)

Neglecting the logarithm of M
m from here on5, we get from (230):

ηfin − ηin ≈ β̃−1, (237)

that is, we identify β̃ with the duration of the phase transition. We thus get for
I(η):

I(η) = eβ̃(η−ηfin+β̃−1)

= e1+β̃(η−ηfin). (238)

and φ(η) becomes, plugging in equation (238) for I(η):

φ(η) = 1 + e− exp(1+β(η−ηfin)). (239)

Plugging in (238) into (234), along with identification the ηin ≡ η̄, we get for
ηin < η < ηfin:

R̄(η) =
vb

β̃
(ln(e) + ln(eβ̃(η−ηfin)))

= vb(β̃−1 + η − ηfin)
≈ vb(η − ηin), (240)

where in the last step we used (237). We have now computed the quantities
necessary to calculate the energy density spectrum.

6.5 Energy-Density Spectrum Today

We can now use equation (197) to compute the energy density spectrum today.
Deciding not to care about the rain forest any more, we will collect the quantities
from equations (222) and (239) and plug them into expression (192) for Sk.
Before we do this, however, we will have a look at what simplifications we can
make. If we look at w(τ), the enthalpy density, we notice that this quantity

5No justification for this effectively taking lnM/m ≈ 1 is given in either [4] or [16], although
a remark on how to include the factor is made in [4]. However, looking at what M and m
are, we see that M � m, so since both are positive M/m � 1. This leads to the conclusion
ln(M/m) � 1. The only reason I see for this approximation is the ln(M) on the left hand
side of (235).
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evolves at scales of one Hubble time, much longer than we assume the phase
transition to last. We thus take it to be constant with value

w∗ =
4
3
ρ∗rad (241)

during the phase transition, where ρ∗rad is the energy density at the time of the
phase transition. Another simplification comes from the form of the energy-
momentum tensor (199). Assuming radiation dominance we get for the kinetic
part of the energy-momentum tensor:

T kin
µν (τ) =

4
3
ρrad(τ)Uµ(τ)Uν(τ), (242)

so, plugging in U0(τ) = γ(τ)v(τ), we get:

T kin
00 (τ) = ρkin(τ) =

4
3
ρrad(τ)

v(τ)2

1− v(τ)2
(243)

and thus for the ratio of kinetic energy and radiation energy at the time of the
phase transition:

Ω∗kin

Ω∗rad

=
ρ∗kin

ρ∗rad

=
4
3

( rint
R vf)2

1− ( rint
R vf)2

. (244)

We now make the assumption that the velocity is constant, and has value equal
to the fluid velocity at the inner boundary rint

R vf. From the hydrodynamics
follows that this velocity is always (also for the case of deflagrations) strictly
less than the speed of sound, see [4], which is 1/

√
3 for relativistic fluids. This

ensures that we always have Ω∗kin/Ω
∗
rad < 1 which has to be satisfied in order for

the universe to be isotropic, and this shows we can safely apply this assumption
everywhere. We thus get for Sk:

Sk =
Gk3a2

∗
32π7

(
w∗v

2
f

1− v2
in

)2 ∫ τf

τi

dτ

∫ τf

τi

dζ

∫
d3p

∫
d3r

∫
d3s

× cos(kτ − kζ)

(
1 + e− exp(1+β̃(η−ηfin))

VcR(τ)2

)2

Pabcde
ir·(k−p)eis·p

× ((Iac(r, rint, R)Ibd(s, rint, R) + Iad(r, rint, R)Ibc(s, rint, R))

× Θ(ζ − τ)Θ(
xc

k
− (ζ − τ)) + symmetrized(τ, ζ)). (245)

Deciding to care for the rain forest again, we consider only the pre-factor in
front of the integral in evaluating (197), where we have set af = a∗:

h2

ρc

(
g∗
g0

)− 1
3 ρrad0

ρ∗rad

Gk3

32π7a2
∗

(
w∗v

2
f

1− v2
in

)2

=
(
g0

g∗

) 1
3 3h2Ω0

radk
3

256π8a4
∗

8πGa2
∗ρ
∗
rad

3

×
(

Ω∗kin

Ω∗rad

)2(
R

rint

)4

, (246)

where we have used (241) for w∗ and used (244) for the velocity quotient. From
equation (88) we have:

H2
∗ =

8πG
3

ρ∗ =
8πG

3
ρ∗rad, (247)
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with in the last identity the assumption of radiation dominance plugged in again.
Defining the conformal Hubble factor as H∗ = a∗H∗ we can rewrite (246) as 6:(

g0

g∗

) 1
3 3h2Ω0

radH2
∗k

3

256π8a4
∗

(
Ω∗kin

Ω∗rad

)2(
R

rint

)4

. (248)

As said before, we will not go into the details of the integration of expression
(245). There are, however, important results to be obtained from it. Looking at
the expression (239) for φ(η), we see that integrating the corresponding factor
φ(η) in (245) will give us a factor 1/β̃2. This can be made explicit by perform-
ing a suitable variable substitution (see [4]). Combining this with the result
(248) for the pre-factor, we see that the abundance of gravitational wave energy

density today scales as
(
H∗
β̃

)2

=
(
ηfin−ηin
T

)2
, the square of the ratio between the

lenght of the phase transition and the Hubble time T . So the longer the phase
transition takes, the larger the abundance. Also, we see that the spectrum has
an overall k3 scaling, but there is still k dependence hidden in the rest of the
expression for the spectrum. Taking these factors into account as is done in
the appendix of [4] a k−2 scaling is found at higher frequencies. As mentioned
before, gravitational waves from bubble collisions is a field of ongoing research,
and one should note that different power laws can be found in different research
articles on the subject, like for example in [12] a k−1 scaling is found for higher
frequencies in the simulations done there. In [3] the authors of [4, 12] have
worked together to combine the merits of their respective methods, and to cor-
rect some flaws in the analytic model presented here.
Finally, the result found for the spectrum of abundance of gravitational wave
energy density is:

h2 dΩgw

d ln(k)
=

(
g0

g∗

) 1
3 3h2Ω0

radH2
∗k

3

256π8a4
∗

(
Ω∗kin

Ω∗rad

)2(
R

rint

)4

×
∫ τf

τi

dτ

∫ τf

τi

dζ

∫
d3p

∫
d3r

∫
d3s cos(kτ − kζ)

×

(
1 + e− exp(1+β̃(η−ηfin))

VcR(τ)2

)2

Pabcde
ir·(k−p)eis·p

× ((Iac(r, rint, R)Ibd(s, rint, R)Iad(r, rint, R)Ibc(s, rint, R))

× Θ(ζ − τ)Θ(
xc

k
− (ζ − τ))

+ symmetrized(τ, ζ)) (249)

Upon integration, one can extract the form of the spectrum from this, as shown
6Notice that we find we have an apparent a4/(27π5a4

∗) discrepancy between our result and
that in formula (57) from [4]. Looking at formula (38) there, we see that a factor of 1/(4π)2

is due to not having performed the isotropic spatial integrals yet. The factor a4 is only there
because (57) in [4] is valid for all η > η∗, whereas (248) here is already evaluated for today.
When comparing, we should evaluate (57) today, using the convention a0 = 1 from [4], and
we see the a4 is set to 1. The factor 1/a4

∗ can be traced back to a rather strange difference in
the equations of motions used here, (168), and in [4], (9). Looking at (8) in [4], one expects

that our T
(TT)
ij (k, η) coincides with their Πij(k, η), but this is in contradiction with the a2

∗ on

the right hand side of (9) from [4] (where we have already taken into account the difference
between h̃ij here and hij there). We are then left with a discrepancy of 1/8π3, which may
very well be due to a factor (2π)3 one should add in the definition (209) when using our
Fourier-convention.

48



Figure 5: The shape (without pre-factors) of gravitational wave energy density
spectrum as a function of Z = kvout/β̃. For this plot xc = 0.9π. Plotted is the
actual shape as found by integrating and by good a approximation. The figure
is from [4].

in figure 5. It turns out that the shape of the spectrum does not depend much
on the strength of the phase transition, which can be expressed in terms of
α = ρvac/ρ

∗
rad where ρvac is the energy density of the false vacuum and ρ∗rad,

the significant dependence on the strength of the phase transition is in the
(Ω∗kin/Ω

∗
rad)2 factor, and implicitly in the factor R

rint
. The integral also contains

a dependence on the latter factor, we can factorize this out as (1 − ( rint
R )3)2.

The dependence of the spectrum on the strength of the phase transition is
therefore almost merely scaling. One important feature of this spectrum is its
peak frequency fpeak and the associated energy density. It turns out that at time
of emission we have fpeak ≈ β̃/vout, the frequency associated with the largest
bubble size that can be obtained, (ηfin − ηin)vout. Translated to the physical
frequency today, this becomes:

fpeak ' 1.12× 10−2mHz
( g∗

100

) 1
6 T∗

100GeV
β̃

H∗
1
vout

, (250)

where T∗ denotes the temperature of the universe at the time of the phase
transition. Evaluating this for a typical first order electroweak phase transition
with β̃/H∗ = 100, T∗ = 100GeV and g∗ ∼ 100 leads to fpeak ∼ 1mHz/vout,
constraining the frequency to lie above fpeak ∼ 1mHz. We can plot the height
of the peak in the spectrum as a function of α and vb for different values for
the duration of the phase transition, expressed in terms of β/H∗ = β̃/H∗, this
is shown in figure 6.

6.6 Likelihood of Detection

The reason physicists are interested in gravitational waves from bubble collisions
during first-order phase transitions is that one of the most important phase tran-
sitions that is thought to have occurred in our early universe, the electroweak
phase transition, could be a first-order phase transition. We have seen from
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Figure 6: The left panel shows the peak in the spectrum as a function of α, the
right as a function of vb. Figure from [4].

the discussion of the pre-factor in (248) that there is quite a lot of information
about the phase transition contained in the energy density spectrum. It would
therefore be really exiting if these gravitational waves could be detected. The
detector planned up to now that is most likely to be able to detect these gravita-
tional waves is the upcoming LISA. At the best sensitivity this detector should
be able to detect energy-densities almost as small as Ωh2 ∼ 10−12. Using the
model developed in this chapter, one can predict (see [4]) that one would need
a fluid velocity of around 0.2c to generate this energy density when the phase
transition lasts around one tenth of a Hubble time. For the more realistic case
of a duration of one hundredth of a Hubble time, one would need the violent
speed of 0.5c. Based on this, it would seem somewhat unlikely LISA will see
gravitational waves generated by bubble collisions during the electroweak phase
transition. Frequency wise LISA listens to a range from f ∼ 3 × 10−2mHz to
f ∼ 10−1Hz ([1]), with the peak sensitivity lying at f ∼ 2mHz ([4]). So for high
velocities the peak frequency will be close to the peak sensitivity of LISA. The
authors of [4] have promised to do a publication on the likelihood of detection
of these gravitational wave signals from the electroweak phase transition, which
may present more optimistic predictions for the energy density spectrum. Of
course, physicists are already working on another bigger detector, which will be
even more sensitive than the already pretty advanced LISA. This detector will
be called Big Bang Observatory (BBO), and will be a bigger version of LISA,
also launched by NASA. This detector will obviously have a better chance of
detecting the gravitational waves from bubble collisions during the electroweak
phase transition.
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7 Conclusion

In this thesis we have given an introduction to the general theory of gravita-
tional waves. We have derived the equations of motion for gravitational waves
(33) on Minkowski space, and given some intuition for what gravitational waves
do with space-time, and what kind of phenomena generate them. With this
intuition in hand we derived the equations of motion for gravitational waves in
a FLRW-universe (132).
We proceeded with the more advanced topic of finding the energy-density spec-
trum for gravitational waves. We started out general, and then restricted our-
selves to the case of generation during radiation domination in a FLRW-universe.
We derived formula (197) for the abundance of gravitational wave energy-density
today, and discussed various approaches and simplifications along the way.
Finally, we applied what we found so far to the case of gravitational waves from
bubble-collisions during first-order phase transitions. There we described an an-
alytic model for the bubble collisions, which incorporated the assumptions that:
the phase transition takes place during radiation domination, the velocity inside
a bubble increases linearly with the distance from the center, we can account for
colliding bubbles by considering correlators of overlapping bubbles, Wick’s the-
orem can be used to approximate four-point velocity correlators (even though
the velocities do not have a Gaussian distribution), all bubbles have the same
radius, the unequal time correlator for the tenser anisotropic stress in Fourier
space can be approximated by its value for equal times with some correction,
and ρ + p and γ do not depend on the position. Under these assumptions we
found (249) for the spectrum of abundance, where we left the integrals unper-
formed, since this would be to technical to treat in a text on this level. For
a treatment, see [4]. In spite of not having performed the integrals, we could
still extract physical meaning from the pre-factor (248). Our main conclusions
there were that the longer the phase transition, the larger the abundance, and
more violent the phase transition, the larger the abundance. We further dis-
cussed, without performing the integration ourselves, different properties of the
spectrum, such as the peak frequency and the k scaling.
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Appendix A

The components of the perturbation to the Ricci-tensor are given by:

δRµν = ∂λδΓλµν − ∂νδΓλµλ + δΓλκλΓ̄κµν + δΓκµν Γ̄λκλ − δΓκµλΓ̄λκν − δΓλκν Γ̄κµλ (251)

In calculating this we will frequently need:

δΓλλ0 = −1
2
∂0h00 +

1
2a2

(−2ȧ
a
hii + ∂0hii + ∂ih0i − ∂ih0i)

= −1
2
∂0h00 −

ȧ

a3
hii +

1
2a2

∂0hii

= ∂0(
1

2a2
hii −

1
2
h00)

and

δΓλλi =
ȧ

a
hi0 −

1
2
∂ih00 +

1
2a2

(−2aȧhj0δij + ∂ihjj + ∂jhij − ∂jhij)

= −1
2
∂ih00 +

1
2a2

∂ihjj

= ∂i(
1

2a2
hjj −

1
2
h00),

which can be combined into the more compact form:

δΓλλµ = ∂µ(
1

2a2
hjj −

1
2
h00) (252)
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We then get for the components of the perturbation of the Ricci tensor (equation
101), using ∂0hµν = ḣµν for shortness of notation:

δRij = −1
2
∂0(−2aȧh00δij + ∂jh0i + ∂ih0j − ∂0hij)

+ ∂k

(
1

2a2
(−2aȧhk0δij + ∂ihjk + ∂jhij − ∂jhij)

)
− ∂j∂i(

1
2a2

hkk −
1
2
h00) + ∂0(

1
2a2

hkk −
1
2
h00)aȧδij

− 1
2

(−2aȧh00δij + ∂jh0i + ∂ih0j − ḣij)
ȧ

a
δkk

+
1
2

(−2aȧh00δik + ∂kh0i + ∂ih0k − ḣik)
ȧ

a
δkj

− 1
2a2

(−2ȧ
a
hki + ḣki + ∂ih0k − ∂kh0i)aȧδkj

+
1
2

(−2aȧh00δjk + ∂kh0j + ∂jh0k − ḣjk)
ȧ

a
δki

− 1
2a2

(−2ȧ
a
hkj + ḣkj + ∂jh0k − ∂kh0j)aȧδki

= (ȧ2 + aä)h00δij + aȧḣ00δij −
1
2

(∂j ḣ0i + ∂iḣ0j − ḧij)−
ȧ

a
∂khk0δij

+
1

2a2
(∂k∂ihjk + ∂k∂jhij −∇2hij − ∂j∂ihkk) +

1
2
∂j∂ih00

− ȧ2

2a2
hkkδij +

ȧ

2a
ḣkkδij −

1
2
aȧḣ00δij + 3ȧ2h00δij

− 3ȧ
2a

(∂jh0i + ∂ih0j − ∂0hij)− ȧ2h00δij +
ȧ

2a
(∂jh0i + ∂ih0j − ∂0hij)

+
ȧ2

a2
hij −

ȧ

2a
(∂0hij + ∂ih0j − ∂jh0i)− ȧ2h00δij

+
ȧ

2a
(∂ih0j + ∂jh0i − ∂0hij) +

ȧ2

a2
hij −

ȧ

2a
(∂0hij + ∂jh0i − ∂ih0j)

=
1
2
∂j∂ih00 + (ȧ2 + aä)h00δij +

1
2
aȧḣ00δij +

ȧ

2a
(ḣkkδij − ḣij) +

1
2
ḧij

+
1

2a2
(∂k∂ihjk + ∂k∂jhij −∇2hij − ∂j∂ihkk) +

ȧ2

a2
(−hkkδij + 2hij)

− ȧ

a
∂khk0δij −

1
2

(∂j ḣ0i + ∂iḣ0j) + ȧ2h00δij −
3ȧ
2a

(∂jh0i + ∂ih0j)

− ȧ

2a
(∂jh0i + ∂ih0j) (253)
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δR0j = δRj0 = ∂0(
ȧ

a
hj0 −

1
2
∂jh00) + ∂i

1
2a2

(−2ȧ
a
hij + ḣij + ∂jhi0 − ∂ihj0)

− ∂j∂0(
1

2a2
hii −

1
2
h00) + ∂i(

1
2a2

hkk −
1
2
h00)

ȧ

a
δij

+ (
ȧ

a
hj0 −

1
2
∂jh00)

ȧ

a
δkk −

1
2a2

(2ḣi0 − ∂ih00)aȧδij − (
ȧ

a
hi0

− 1
2
∂ih00)

ȧ

a
δij

− 1
2a2

(−2aȧhi0δjk + ∂khij + ∂jhik − ∂ihjk)
ȧ

a
δki

= (
ä

a
− ȧ2

a2
)h0j +

ȧ

a
ḣj0 −

1
2
∂j ḣ00 −

ȧ

a3
∂ihij

+
1

2a2
(∂iḣij + ∂i∂jhi0 −∇2hj0)

+
ȧ

a3
∂jhii −

1
2a2

∂j ḣii +
1
2
∂j ḣ00 +

ȧ

2a3
∂jhkk −

ȧ

2a
∂jh00 + 3

ȧ2

a2
hj0

− 3ȧ
2a
∂jh00 −

ȧ

a
ḣ0j +

ȧ

2a
∂jh00 −

ȧ2

a2
h0j +

ȧ

2a
∂jh00 +

ȧ2

a2
hj0 −

ȧ

2a3
∂jhii

= − ȧ
a
∂jh00 +

1
2a2

(∂i∂jhi0 −∇2hj0) + (
ä

a
+

2ȧ2

a2
)h0j

− (
1

2a2
∂j ḣii − ∂iḣij) +

ȧ

a3
(∂jhii − ∂ihij)

= − ȧ
a
∂jh00 +

1
2a2

(∂i∂jhi0 −∇2hj0) + (
ä

a
+

2ȧ2

a2
)h0j

− 1
2
∂0(

1
a2

(∂jhii − ∂ihij)) (254)

δR00 = −1
2
ḧ00 +

1
2a2

∂i(2ḣ0i − ∂ih00)− ∂2
0(

1
2a2

hii −
1
2
h00)− 1

2
ḣ00

ȧ

a
δii

− 1
a2

(−2ȧ
a
hij + ḣij + ∂jhi0 − ∂ih0j)

ȧ

a
δij

=
1
a2
∂iḣ0i −

1
2a2
∇2h00 −

1
2a2

ḧii − (3
ȧ2

a4
− ä

a3
)hii

− 3ȧ
2a
ḣ00 +

2̇a
2

a4
hii −

ȧ

a3
ḣii

= − 1
2a
∇2h00 −

3ȧ
2a
ḣ00 +

1
a2
∂iḣ0i

− 1
2a2

(ḧii −
2ȧ
a
ḣii + 2(

ȧ2

a2
− ä

a
)hii) (255)
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